Vibrational G peak splitting in laterally functionalized single wall carbon nanotubes: Theory and molecular dynamics simulations

Citation:

de Oliveira AB, Chacham H, Soares JS, Manhabosco TM, de Resende HFV, Batista RJC. Vibrational G peak splitting in laterally functionalized single wall carbon nanotubes: Theory and molecular dynamics simulations. CARBON. 2016;96:616-621.

Abstract:

We present a theoretical study of the vibrational spectrum, in the G band region, of laterally hydrogenated single wall carbon nanotubes through molecular dynamics simulations. We find that bilateral hydrogenation which can be induced by hydrogenation under lateral strain causes permanent oval deformations on the nanotubes and induces the splitting of vibrational states in the G-band region. We propose that such splitting can be used as a Raman fingerprint for detecting nanotubes that have been permanently modified due to bilateral hydrogenation. In particular, our results may help to clarify the recent findings of Araujo and collaborators [Nano Lett. 12, 4110 (2012)1 which have found permanent modifications in the Raman G peaks of locally compressed carbon nanotubes. We have also developed an analytical model for the proposed phenomenon that reproduces the splitting observed in the simulations. (C) 2015 Elsevier Ltd. All rights reserved.