ELETROTÉCNICA – CAT124 CAPACITORES Adrielle C. Santana

- Considere 2 placas de material condutor separadas por um isolante (ar).
- Chave aberta = nenhuma carga nas placas.
- Chave fechada = elétrons da placa superior se atraem pelo terminal positivo da bateria.
 Esses elétrons são repelidos para placa

inferior.

corrente $E = \begin{bmatrix} e & & & & \\ &$

Sentido real da corrente

- Não há contato entre as placas, o fluxo se dá passando pela bateria.
- Essas duas placas separadas por um material isolante é um Capacitor.
- A Capaciância é a medida da quantidade de carga que o capacitor pode armazenar em suas placas.
- Quanto mais alta a capacitância, maior a quantidade de carga armazenada nas placas para uma mesma tensão aplicada.

- Em eletrostática, tem-se que a carga Q de uma carga puntiforme (esférica) é diretamente proporcional ao seu potencial elétrico **V** (d.d.p. em relação ao infinito).
- Define-se capacitância como a medida da capacidade de um condutor **armazenar carga** para uma dada **d.d.p.** (tensão) aplicada em seus terminais. Logo, para um condutor isolado, tem-se que:

$$C = \frac{Q}{V}$$
 Q - carga do condutor (C)
V - potencial elétrico do condutor (V)
C - capacitância elétrica (F).

 A unidade de capacitância no SI é o farad (F), escolhida em homenagem ao filósofo natural Michael Faraday, que estudou a indução eletromagnética em um condutor percorrido por uma corrente contínua (DC).

Michael Faraday (1791 - 1867)

Em um capacitor de **placas planas paralelas**, tem-se uma d.d.p. entre as placas dada por:

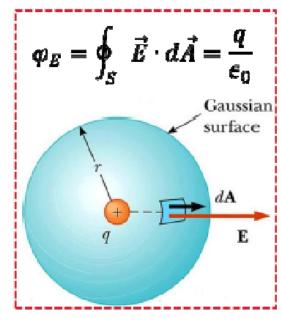
V = Ed
 E - campo elétrico entre as placas (V/m)
 d - distancia entre as placas (m)

Pela Lei de Gauss, obtém-se um campo elétrico **E** em cada placa:

$$E = \frac{Q}{2\epsilon_0 A}$$

 $E = \frac{Q}{2\epsilon_0 A}$ ϵ_0 – permissividade elétrica do vácuo (F/m) A– área de uma placa (m²)

Lei de Gauss


Sendo o campo resultante no interior das placas:

$$E = \frac{Q}{\epsilon_0 A} \qquad \qquad V = \frac{Qd}{\epsilon_0 A}$$

Desta forma, pode-se calcular a capacitância entre as placas do capacitor:

$$C = rac{Q}{V} = rac{\epsilon_0 A}{d} = rac{\epsilon_0 \epsilon_r A}{d}$$
 relativa ou constante dielétrica (F/m).

 ϵ_r – permissividade elétrica dielétrica (F/m).

Wire

Wire

Logo, a capacitância no capacitor está relacionada com:

a área;

a distância entre as placas;

a permissividade elétrica no vácuo;

a constante dielétrica ou permissividade relativa do isolante.

 Quando conectado a uma fonte CC, tem-se que o capacitor terá uma d.d.p. aplicada às suas placas.

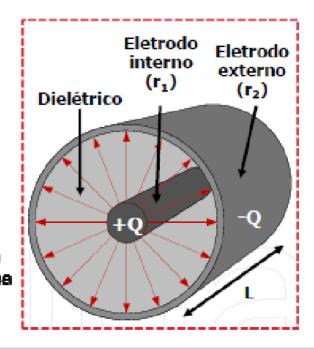
 O que provoca a sua polarização e o posterior acúmulo de cargas (carregamento) positivas e negativas em suas respectivas placas, conforme a polaridade da fonte.

 Quando a tensão (d.d.p.) entre as placas do capacitor for igual à tensão da fonte, v_{ab} o fluxo de elétrons se interrompe e o capacitor se comporta como um circuito aberto.

Para um capacitor cilíndrico placas concêntricas, tem-se:

$$dV = -E_R \cdot dr$$
 $E_R - \text{campo elétrico resultante entre as placas (V/m)} \ dr - \text{distancia (raio) diferencial entre as placas (m)}$

Pela Lei de Gauss, para $r_1 < r < r_2$ obtém-se um campo elétrico \boldsymbol{E} entre placas:


 $E_R = rac{Q}{2\pi\epsilon_0 rL}$ ϵ_0 – permissividade elétrica do vácuo (F/m) L – comprimento do condutor (m)


A d.d.p. entre as placas é dada por:

$$V = \int_{r_1}^{r_2} dV = \int_{r_1}^{r_2} E_r \cdot dr = \frac{Q}{2\pi\epsilon_0 r L} \int_{r_1}^{r_2} \frac{dr}{r} = \frac{Q}{2\pi\epsilon_0 r L} \ln \frac{r_2}{r_1}$$

 Desta forma, pode-se calcular a capacitância entre as placas do capacitor por:

$$C = \frac{Q}{V} = \frac{2\pi\epsilon_0 L}{\ln(r_2/r_1)} = \frac{2\pi\epsilon_0\epsilon_r L}{\ln(r_2/r_1)} \quad \text{for permissividade elétrica relative ou constante dielétrice} \\ \frac{(\text{F/m}).}{(\text{F/m})} = \frac{2\pi\epsilon_0 L}{\ln(r_2/r_1)} \quad \text{for permissividade elétrica}$$

Símbolo para capacitores fixos (a) e variáveis (b).


Tântalo (compacto, dispositivo de baixa voltagem, de até 100µF aproximadamente);

Eletrolítico (de alta potência, compacto mas com muita perda, na escala de 1μF-1000μF)

Poliéster (de aproximadamente 1nF até 1µF)

Polipropileno (baixa perda, alta tensão, resistente a avarias)

Poliestireno (geralmente na escala de pF)

Cerâmica (valores baixos até cerca de 1µF)

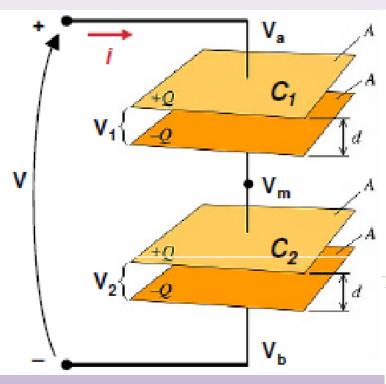
Capacitores de AT em ensaio de descargas parciais

Capacitores de AT para regulação de Fator de Potência.

Carregamento de Capacitores

 No processo de carregamento de um capacitor, uma corrente i(t) flui enquanto a carga flui de uma placa para outra. Lembrando que a corrente elétrica é dada por:

$$i = \frac{dq}{dt} \approx \frac{\Delta q}{\Delta t} \implies q(t) = Cv(t)$$
Substituindo
$$i = C \frac{dv}{dt}$$


Sendo a tensão em um capacitor de capacitância C dada por:

$$v = \frac{1}{C} \int_{-\infty}^{t} i \, d\tau$$

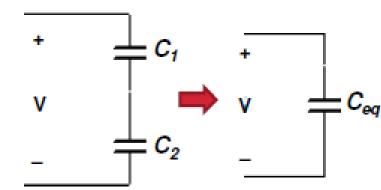
A tensão sobre um capacitor não pode variar instantaneamente

 A medida em que a corrente flui de um terminal (+) para (-), ela faz com que o terminal (+) tenha uma tensão positiva relativa ao terminal (-).

Capacitores em Série

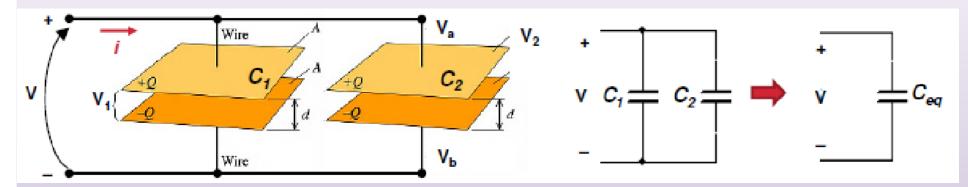
Capacitância equivalente é dada por:

$$C_{eq} = \frac{Q}{V}$$
Igualando V


$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$$

Logo, a capacitância em série é dada por:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$


$$\frac{1}{C_{eq}} = \sum_{i=1}^{n} \frac{1}{C_i}$$

Expressão geral

A capacitância equivalente de uma associação de capacitores em série é sempre **menor** que qualquer capacitância da associação.

Capacitores em Paralelo

$$C_{eq} = C_1 + C_2$$

$$C_{eq} = \sum_{i=1}^{n} C_i$$
Expressão geral

Logo, a capacitância em paralelo é dada por:

$$C_{eq} = C_1 + C_2 + \dots + C_n$$

A capacitância equivalente de uma associação de capacitores em paralelo é sempre **maior** que qualquer capacitância da associação