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ABSTRACT 
of simole digital filters is discussed and it is shown how - . 1 ” 

The four main techniques used to describe signals and z-transform methods lead to the construction of conve- 
systems are reviewed: time domain impulse response, Gent recurrence relationships and the estimation of 
and Fourier, Laplace and z-transform methods. The design frequency response and mid-band gain. 
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INTRODUCTION 

Digital filtering operations form an important part 
of the signal analysis procedures which are used in 
the study of many biological phenomena. This has 
been brought about to some extent by the increas- 
ing use of computers of various degrees of com- 
plexity in biological research. In medicine and 
physiology, digital filters have been used during the 
course of studies on all of the major systems of the 
body. The signals involved include blood pressure 
and flow, electrograms from the heart, brain and 
smooth and striated muscle, nerve action potentials 
and pressure signals from the lumina of the gut, the 
urinary tract and the uterus. The tasks required of 
the filters have been manifold, ranging from trend 
detection and the extraction or accentuation of 
those special features in a signal which are required 
to test a h othesis down to the minimization or 
removal o interfering noise and artefact components P 
in raw data. The personnel involved in biomedical 
signal processing activity derive from a wide range 
of academic backgrounds, ranging from engineering 
to psychology; it would appear that many of these 
workers experience difficulty in understanding the 
theoretical bases of digital filter theory and its 
relationship to continuous time filter theory as it 
applies to non-sampled signals or systems. The out- 
come is that a few simple digital filters which are 
known to work (the moving average, for example) 
get used over and over again, often in situations 
where the best choice of filter has not been estab- 
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lished in any formal way. The purpose of these 
three papers is to explain the theory of digital 
filters in such a way that the reader gains a firm 
grasp of the relationships between discrete and 
continuous time filter systems and a clear under- 
standing of the many practical aspects of digital 
filter design. 

In the first paper, the Fourier, Laplace and 
time domain descriptions of signals and systems 
are summarized and the z-transform is introduced 
in the context of its relationship to those of 
Fourier and Laplace. The design of simple digital 
filters is discussed in detail and we show how 
z-transform methods lead to the construction of 
convenient recurrence relationships and the esti- 
mation of frequency response and mid-band gain. 
The second paper deals with more advanced design 
procedures and some of the many compromises 
which must be made in practice. These include the 
trade-off between filter impulse response shape 
and duration and side lobe generation in the fre- 
quency response, and the problems involved with 
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Figure 1 The periodic gate function - a train of rectan- 
gular pulses of height A, width 2 7 repeating at intervals of 
Tintherange -m<t<+-. 
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the design of high pass digital filters. The bilinear 
transform is introduced as a technique by which 
the digital equivalent of analogue filter designs can 
be derived. In the third and final paper the methods 
developed in the previous two will be used to develop 
digital versions of Butterworth and Chebychev 
filters of various orders. 

It is hoped that our readers will be convinced that 
a formal approach to the design of digital filters is 
worthwhile and indeed quite simple. 

F(o)eiwtdo 
-0 

The exponential Fourier series, the Fourier transform 
and the sampled signal 

F(w) = f f(f(t)e-gtdt 
-m 

A large number of text books’y2*3 deal with the 
exponential Fourier series, the Fourier transform 
and the sampled signal and we do not propose to 
do more than summarize the essential concepts 
here. The basis of the Fourier series representation 
is that a given function can be represented by a 
summation of a set of orthogonal functions, and 
that the representation improves as the number of 
functions in the orthogonal set increases. Complex 
exponential functions are most commonly used 
because they not only form an orthogonal set, but 
also, any pair multiplied together forms another 
member of the set; they also have the useful property 
that their real and imaginary parts consist of sine 
and cosine functions. 

In order to compare the series and transform repre- 
sentations we consider the sequence of rectangular 
pulses shown on Figure 1. Evaluating lb we get 

This function has a sine (sin X/X) envelope but only 
exists for integer values of n; it therefore consists 
of vertical lines on an amplitude-frequency graph 
and is known as a line spectrum (Figure 2). The 
spectral lines occur at harmonics of the repetition 
frequency, wO = 21r/T. The distance between zeroes 
in the sine envelope is given by no0 = r/r and the 
number of spectral lines within the first lobe is 
‘rr/o,-,~ = T/27, truncated to the nearest integer. The 
amplitude at zero frequency increases proportionally 
with 27/T, as one might expect from the fact that 
an increase in pulse width contributes directly to 
the d.c. component in the signal. If T remains fixed 
and we increase the period T such that it approaches 
infinity, the number of spectral lines on Figure 2 
increases without limit until the spectrum becomes 
the continuous function represented by the sine 
envelope. This is the Fourier transform of a single 
rectangular pulse of width 27. The first zero still 
occurs at R/T and the d.c. amplitude becomes 2A7 
instead of 2A r/T. 

A signalf(t), expressed as its exponential Fourier 
series becomes 

f(t) = s Fneinwot 
n=-CC. 

where 

F, =+ 
Gl+r 

s 
f(t)e”‘“w@t dt 

to 
(9 

and 

T= 2nloo. 

la and lb are a transform pair. T is the time period 
over which f(t) is assumed to repeat. The exponential 
Fourier series representation clearly applies to signals 
which repeat indefinitely with period T, or can be 
assumed to repeat for analytical convenience. A 

’ '2TUT 

Figure 2 Fourier series representation of periodic gate 
function. The sin x/x envelope decays at a rate depending 
on the gate width and the frequency interval between 
spectral lines corresponds to the repetition frequency. 

once-for-all signal, such as a single pulse does not 
repeat periodically and is described by the Fourier 
transform instead of the Fourier series representa- 
tion. The transform is the limiting case of the series 
as period T tends towards infinity. 

The Fourier transform pair has the form 

(2b) 

If the period T remains finite but 7 is reduced to 
zero in a limiting process such that each pulse has 
unit area, then the signal on Figure 1 forms a train 
of equispaced unit impulses or Dirac functions in 
time known as a sampling function. Multiplication 
of this new sequence with any arbitrary time func- 
tion performs the operation of sampling that func- 
tion. The result of the multiplication process is a 
sequence of equispaced impulses whose weights 
correspond to the instantaneous values of f(t) at the 
instants it was sampled (Figure 3). The interval 
between the impulses is known as the sampling 
interval and its reciprocal the sampling frequency. 

The Fourier transform or spectrum of the sampling 
function is the limiting case of Figure 2 with the 
first zero at infinite frequency. Figure 4a shows the 
spectrum; the interval between spectral Iines is the 
sampIing frequency. The spectrum of the sampled 
signal can be derived using the fact that multiplica- 
tion in the time domain is equivalent to a convolu- 
tion process in the frequency domain. If the spec- 
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Figure 3 (a) The unit impulse sequence can be regarded 
as a limiting case of the periodic gate function. It has the 
sampling property that multiplication of an arbitrary signal 
(b) by the impulse sequence (a) results in the samples 
version of the signal shown in (c). 

trum of the original time function is that shown in 
Figure 4b then the spectrum of its sampled version 
is that shown in Figure 4c. It consists of a series 
of identical repeats of the original spectrum, 
centred about multiples of the sampling frequency. 
The sampling process is only valid if the unsampled 
signal is bandlimited such that its highest frequency 
component, ON, is less than half the sampling 
frequency; that is &.+ < 0,. This is the condition 
for adjacent sidebands on Figure 4c to remain 
separate and is known as the Nyquist criterion. If 
this condition is not met ‘aliassing’ is said to have 
occurred. The term derives from the fact that a 
spectral component in the lower sideband centred 
on o,, will appear ‘alias’ a component in the upper 
sideband centred on zero frequency. If the Nyquist 
criterion is upheld then all the information con- 
tained in the unsampled waveform still exists in the 
sampled waveform. The original signal can be 
recovered from its sampled representation by low 
pass filtering to remove all frequency components 
outside the range -0,/2 > w > wJ2. 

The sampled system and the digital representation 
of its responses 

The behaviour of a system can be described by the 
relationships between its outputs and signals applied 
to its inputs. Inputs most frequently used in system 
characterization are sinusoids, unit step functions, 
unit impulse functions, pseudo-random binary 
sequences, and broadband noise. The unit impulse is 
particularly useful because the system response to 
it, the impulse response, can be used to build the res- 
ponse to more complicated input waveforms by 
convolution, if the system is linear. Figure 5 shows 
a generalized linear system with a unit impulse 
function applied to input 3. The response at output 
4 is the impulse response for this input-output pair 
ha4 say. hs4 defines the signal transfer properties of 
the system between input 3 and output 4. When a 
signal,f3(t), is applied to input 3 the output at port 

4 can be determined by the convolution of the 
input signal with the system impulse response. 

(34 

In order to visualize this operation more clearly, 
imagine that fs(t) itself consists of a train of 
impulses (Figure 56); when each of these passes 
through the system it will elicit the system impulse 
response at the output, weighted according to the 
amplitude of the input impulse. The whole output 
will consist of the superposition of these separate 
impulse responses. A continuous time input signal 
can be considered as a train of suitably weighted 
impulses spaced apart by an infinitesimally small 
time interval. The output will be built up of the 
corresponding impulse responses superimposed 
upon each other and spaced apart by the same time 
interval. Equation 3a expresses this process of 
superposition mathematically. 

The Fourier transform of the impulse response 
yields the system frequency response between 
input 3 and output 4. The convolution operation, 
3a, can be considered as a multiplication process in 
the frequency domain. 

Symbolically, 

Y&J) = &( 

where 

y4 w = Y4H 

F3W = f&I 

and 

H34W = h,,(t) 

are Fourier transform pairs. 

Figure 4 (a) Spectrum of a unit impulse sequence with 
sample interval T = 2n/0,. 
(b) Spectrum of unsampled signaL 
(c) Spectrum of sampled version of b. 

J. Biomed. Eng. 1982, Vol. 4, October 269 



Digital filters for biomedical signal.processing (part 1): R.E. Challis and R.I. Kitney 

A simple two port system has only one input and 
one output and the subscripts are no longer 
required. The use of a digital computer as part of a 
system or to simulate a system, requires that the 
system itself be considered as a sampled entity. A 
sampled system impulse response has a spectrum 
which has all the properties of a sampled signal 
spectrum; in particular, the spectrum repeats 
identically at intervals of the sampling frequency. 

A digital filter is a sampled two-port system and its 
sampling interval must be such that all the frequency 
components required for its complete description 
are contained in the interval 0 < w < w,/2. This 
condition may not be satisfied where a digital filter 
is designed by simply digitising the impulse response 
of a hardware filter. We shall see in paper II how this 
problem can be overcome in practice. 

The Laplace transform, system transfer function and 
the s-plane 
There are some continuous time functions for which 
the Fourier Transform does not converge (for 
example a ramp or step function) and cannot there- 
fore be used for analysis. This prevents the applica- 
tion of the Fourier transform to a range of problems 
associated with the transient response of systems 
and filters. The Laplace transform is a generalisa- 
tion of the Fourier transform which contains a 
convergence factor eBbt, thus 

L[f(t)l = r - f(t) e4e+dt (4) 
Irn 

where Llf(t)] denotes the Laplace transform of 
f(t). The transform is equivalent to describing f(t) 
by an orthogonal set of exponentially growing or 
decaying sinusoids each of which is defined by the 
decay constant u and radian frequency, o, in one 
complex number, s = 0 + Jo. The Laplace trans- 
form is a function of s and equation 4 is frequently 
written 
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Figure 5 (a) Generalized linear system. In the time domain 
the output is obtained by convolution of the input signal 
with the system impulse response 1~. 
(b) A signal consisting of a five equispaced impulses is 
applied to input 3. The output at port 4 consists of a 
corresponding set of five impulse responses, 1~ , separated 
by the same interval, weighted according to the input 
impulse weights, and superimposed upon each other. 

m 

F(s) = 
s 

f(t)e-“dt (5) 
-00 

If f(t) is causal_, i.e., it only exists for t > 0, the 
lower limit of integration is 0 and the result is the 
unilateral or one sided Laplace transform. The 
Laplace transform of the impulse response of a 
system is known as the system transfer function, 
G(s), which in the most general terms consists of 
the ratio of two polynomials in s. 

G(s) = 
a0 +als +a2s2 ........ + a,? 

b, +b,s+b2s2;. +bks” 
(6) 

...... 

Factorizing the numerator and denominator we 

get 

(s + 011) (s + (32) 
G(s) = s+p 

. ..*... (s+qJ 

1 
s+p 

2 ..a.... s + ok 
(7) 

Since s is a complex number it can be plotted on an 
Argand diagram and this is normally called the 
s-plane (&&re 6a). The function G(s) can be repre- 
sented by a surface on the s-plane which would 
come vertically out of the paper on Figure 6a; the 
height of the surface above the s-plane is the 
modulus of G(s). (Figure 6b). The roots of the 
numerator of equation 7 (s = -u$ give values of s 
for which G(s) = 0; they are known as the zeros of 
G(s). Similarly, the roots of the denominator yield 
the values of s for which G(s) is infinite and these 
are known as the poles of G(s). Poles and zeros are 
usually plotted on the s-plane as X’s and O’s 
respectively. Figure 6b shows G(s) plotted as a 
surface on the s-plane; a pole shows as a physical 
‘pole’ (a vertical upshoot of infinite height) and 
zeros are the points where the surface touches 
the s-plane. The frequency response of a system 
is merely G(s) evaluated for s = jw, that is along 
thejo axis on the s-plane. If we take a slice through 
the surface representing G(s) on 6b corresponding 
to a cut along the jw axis then the exposed edge of 
our surface corresponds to the frequency response 
of the system, it being no more than a two dimen- 
sional graph of G@) versus o (Figure 6~). The 
frequency response can be calculated by means of 
a graphical construction on the s-plane. Figure 6d 
shows poles and zeros marked on the s-plane and a 
point on thejo axis marked as a. The system 
response at frequency 52 is simply the product of 
all the zero vector magnitudes, Zi, divided by the 
product of all the pole vector magnitudes, Pi. 
Hence, for the pole-zero pattern on 6d we get 

The phase response,<G(jw) can be obtained from 
the same diagram, it is merely the sum of all the 
zero vector angles minus the sum of all the pole 
vector angles. The vectors are assumed to be drawn 
from the zeros or poles to jC2 and their angles are 
the anticlockwise angular displacements from the 
horizontal axis. 

The s-plane pole-zero description of systems has 
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/m(s) = jw 

X 
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proved to be an invaluable aid to the design of 
continuous time filters and in the analysis of con- 
tinuous time systems. It is limited in its application 
to sampled data or systems because it cannot 
conveniently deal with the infinitely repeating 
sampled signal spectra. We shall see in the 
following sections how the z-transform overcomes 
this problem and how s-plane designs of filters 
can be translated into their z-transform equivalent. 

The z-transform, the s-plane and the z-plane 
We have seen that a sampled signal or impulse 
response consists of a sequence of equispaced 
samples, T seconds apart, whose weights are equal 
to the amplitude of the original function at the 
instants at which it was sampled. Such a sequence 
may be represented in the time domain as 

f(t) = x(O) 6(t) +x(l) S&T) + . . . +x(n) A(t-nT) 

or 

f(t) = 2 +z) s(t-nT) 9(a) 
n=--co 

The Laplace Transform of this sequence is 

F(s) = x(O) +x(l) ewsT + x(2) e-2sT 

+ . . . . x(n) emnsT 
(10) 

since the time delays nT are equivalent to multi- 
plying by e -nsTunder the Laplace Transformation. 

It is convenient to use the shorthand notation, 
z = esT, whence equation 10 becomes 

X(z) = x(0) +x(1) z-1 + “(2)Y2 f . . . . . x(n)fn 

or 

X(z) = 2 .(n)z-n 
n=-C-3 

(11) 

X(z) is the z-transform of the sequence x(n). 

For s = jw equation 11 becomes the discrete 
Fourier transform, which is the Fourier transform 
of a signal which only exists at intervals of T. The 
real and imaginary parts of the variable z can be 
mapped onto an Argand diagram known as the 
z-plane. The special relevance of the z-transform to 
sampled data systems can be illustrated by consider, 
ing the relationship between quantities expressed 

Figure 6 The nature and properties of the s-plane. 
(a) The s-plane is an Argand diagram representation of the 
complex number S. The real (horizontal) axis represents u 
whilst the imaginary axis (vertical) represents jo. Poles and 
zeros in the function G(s) are represented by a surface on 
the s-plane. (b) At zeros the surface is coincident with the 
plane and at poles its height above the plane is infinite. 
(c) A section through the surface taken along the jw axis 
yields the frequency response G(jw) versus jw. 
(d) The s-plane showing a complex pole pair with zeros 
on the o axis. The insert shows that a vector from s = ja to 
apoleat-_PhasalengthP=s+fl(since-fl+P=s). 
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s Z 
Imglz) 

Istpass let y(3) = lx(l) + X(2) +X(3) + X(4) 

+ x(5)1 /5 

Rebl 

Figure 7 Mapping the s-plane on to the z-plane under the 
transformation z = esT. Points to the left of the in axis map 
inside the unit circle on the z-plane. 

on the s-plane and the way in which they map onto 
the z-plane. 

Figure 7 shows the s and z-planes and we consider 
the mapping of point A on the s-plane onto the 
z-plane. Now 

%=e UT&T 

On the z-plane point A is described by the vector 
z1 = eJwlT. It has magnitude rl = eulT and td 
phase olT radians. rl will be <I for o1 < 0 and 
>l for u1 > 0. Thejo axis corresponds to 
2 Z 1&lWl’;. it therefore maps onto a unit circle on 
the z-plane. The s-plane origin (‘dc.‘) maps to 
z = +l. At points on the jw axis corresponding to 
multiples of the sampling frequency we have 
o = No, = N2n/T. All these points map to z = +l 
on the x-plane; the z-transform thus conveniently 
compresses the repeats of sampled signal spectra 
into a single trajectory round the z-plane unit 
circle. To further illustrate this we consider the 
s and z-plane plots shown on Figure 8. The pole- 
zero configurations on the s-plane consist of zeros 
at multiples of the sampling frequency flanked by 
pole pairs marked 01 and 0. The z-plane map shows 
that a11 these sets of a single zero and two poles 
map into a single zero and pole pair. 

Under the relationship z = esT points on the s-plane 
which lie to the left of thejo axis map to points 
inside the unit circle on the z-plane. Some authors 
define z = ewsT and under this relationship the 
mapping of the two halves of the s-plane onto the 
%-plane is reversed. 

Simple digital filters 

A digital filtering operation consists of an operation 
on an input sequence, x(n), by a filtering sequence, 
h(n), to produce an output sequence, y(n). Figure 9 
illustrates an arbitrary sequence x(n) and a simple 
rectangular window for h(n) which consists of five 
unit impulses. The operation of h(n) on x(n) 
consists of a convolution and we consider the process 
stepwise: 

We begin calculating y(n) at n = 3 and perform the 
following operations: 

2nd pass shift h(n) forward one interval, 

let y(4) = 1x(2) + x(3) + x(4) + x(5) 

+ x(6)1 /5 

3rd pass shift h(n) forward one more interval, 

lety(5) = 1x(3) +x(4) +x(5) +x(6) 

+ x(7)1 /5 

and so on. 

The operation, shift, add and divide by 5 is conti- 
nued until h(n) has been passed over all the input 
samples. Such a filter is known as a moving average 
filter and h(n) is called its weighting function. The 
filter has the effect of smoothing out undulations 
in x(n) and is thus a low pass filter. An h(n) with 
more impuIses wouId smooth more strongIy and 
would thus have a sharper cut off. Other weighting 
functions are common and Figure 10 illustrates the 
triangular window, which has the same effect as a 
rectangular window of 5 unit impulses passed over 
the data twice. In the sections which follow, we 
consider how the properties of the z-transform may 
be used to reduce the computational effort involved 
in the filtering operations and how they lead to a 
simple technique for establishing the frequency 
response of the filter. 

The z-transform of digital filters, the auto regressive 
form and frequency response estimation 
The simple description of the digital filtering opera- 
tion outlined in the last section can be formalised 
using the r-transform method and the number of 
computing operations required for its execution 
can be greatly reduced when the filter is put into 
its autoregressive form. In this technique the nth 
output term of the filter is calculated from both 

t 
a 
2w, 

1 p s 
a 
WC 

Z 

T P‘ 
a 

C-1 z=+l e P 

Figure 8 Mapping the jw axis from the s-plane to the 
z-plane. Pole-zero combinations which repeat at intervals 
W, on the s-plane are compressed into one revolution on 
the z-plane, 
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h(n) 

I 5 10 n 
\ I 

\\ I I / 
\\ I // 

\\ I // 

y(n) I Y’ 

1 I 

Figure 9 A sampled signal, x(n) and 5 point moving average 
filter h(n) ; each output sample, y(n), is formed by taking 
the average of five successive input samples, the effect is 
to low pass filter the signal. 

previous output terms and input terms, the total 
number of terms generally being less than required 
for non-autoregressive operation. 

The operation of convolution can be described as: 

Y(n) = -$ x(k) h(n-k) 
k=_m 

(12) 

It can be shown that2 equation 12 is equivalent 
to a multiplication of z-transforms: 

Y(z) = H(z) X(z) (13) 

where 

X(z) = 2 x(n) %-n 
n=--m 

(14) 

For the simple 5 unit impulse moving average filter 
considered in the last section 

f+) = 2 Z-n = s 
n=O 

(15) 

Combining 13 and 15 we get 

Y(z) = 2 -1 Y(z) + X(z) -z-5 X(z) (I6 

Remembering that multiplication by the operator 
z is equivalent to a shift of minus one sampling 
interval, we can easily derive the inverse transform 
of equation 16. It is 

y(n) = y(?L-1) + X(7z) -x(n-5) (17) 

Equation 17 represents the autoregressive form of 
the filter and is known as the recurrence relation- 
ship. 

[ Note that multiplication by Zm corresponds to 
shifting y(n) to y(n+m) in the untransformed 
sequence. Multiplication by z1 shifts the sequence 
y(n) backwards one sample so that we operate on 
a sample one interval later, i.e. y (n+l). Multiplica- 
tion by .z+” shifts the sequence y(n) forwards so 
that we operate on an earlier sample, y(n-m).] 

Each output term, y(n) is evaluated as a function 
of the previous output term and two input terms. 
The advantage here is that only three terms are 
required to calculate each output term, instead of 
five input terms described previously. As the 
number of samples in h(n) increases autoregressive 
operation becomes relatively more advantageous 
since, for a simple moving average filter of N 
samples duration equation 17 becomes 

y(n) = y(n-1) + X(?z) -x(72-N) (18) 

the number of samples required for the evaluation 
of each output sample is still only three. Similar 
economies can be obtained with filters of much 
greater complexity. 

The frequency response of the digital filter is simply 
obtained by evaluating H(z) around the unit circle 
on the z-plane. This corresponds to the substitution 
z = Pt. For the N-impulse moving average filter we 

get 

rearranging and taking the modulus we get 

sin NwT 

IHo’w)l = w; 
sin _ 

2 

(19) 

The response for N = 5 is shown in Figure 12b. It is 
unity for UT = 0 and wT = 27r (the sampling 
frequency) and contains N lobes between these 
limits. 

This method for frequency response estimation is 
convenient for fairly simple filters of the type 
described here, but is not well suited to the rapid 
estimate of frequency response of more complex 
filters, Further, synthesis of a filter to a given 
frequency response specification would be difficult 
using this technique. The z-plane description of a 
digital filter greatly facilitates these tasks and is 
described in the next section. 

The z-plane description of a digital filter 
In the most general terms, the z-transform of a 
digital filter consists of the ratio of two poly- 
nomials in z. 

H(r) = 
co +c,z+c222.. ..... +CnZn 

do +d,z +d2z2 .+dkZk (21) ...... 
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r TRIANGULAR WINDOW 

L I 

Figure 10 Triangular window weighting function. 

This is analogous to the way in which the system 
transfer function has previously been described by 
the ratio of polynomials in the Laplace variable. 
Factorizing equation 21, H(z) becomes 

k + 71) (z + 72) . . . . . . . (2+y,) 
H(z) = (z (z + A,) . . , , . , . (z + Ak) (22) 

The roots of the numerator and denominator yield 
the poles and zeros of H(z) and these can be plotted 
on the %-plane diagram by setting % = -7 for zeros 
and % = -A for poles. The z-plane pole-zero plot 
can be used to build up the filter frequency 
response. Figure 11 shows a %-plane diagram with 
three poles and two zeros. The filter response at 
any frequency, a, is obtained by plotting the 
vectors from the poles and zeros to the point on 
the unit circle corresponding to w = a. These are 
shown on Figure 11 as 7’ and A’, Since y’ = % + y 
for a zero at --“/ and A’ = % + A for a pole at -A 
we get 

(23) 

This construction can be used to estimate the 
frequency response by eye, To obtain the estimate 
one ‘moves’ round the unit circle, starting at % = 1, 
in order to follow thejo axis. The effect of the 
proximity of poles and zeros can be considered 
separately: if one moves (a) close to a zero, the 
response will approach zero; (b) close to a pole the 
response will tend towards infinity; (c) close to a 
coincident pole-zero pair the response will approach 
unity; (d) near a pole-zero pair in close proximity, 
but not coincident, the response tends towards 
infinity if the pole is closer and towards zero if 
the zero is closer. Points distant from the pair will 
be relatively unaffected, since the two tend to 
cancel when their vectors approach equality. This 
effect is illustrated by r1 and Ai on Figure II. They 
have little effect over most of the frequency band, 
but produce a notch in the response at oT = a. The 
frequency response is shown on Figure 11. 

The pole-zero pattern for simple moving average 
filters is very easily obtained from the %-transform, 
Considering 

-N 
H(z) = & = 1 -%N 

ZN-l (1 -%) 

we see that H(z) has a single pole at % = 1 and N - 1 
poles at the origin, % = 0. The factors in the numera- 
tor correspond to the N roots of %N = 1. Recalling 

that e*jzn = 1 we get 

%N = ~'21rn 
(25) 

Whence the %-plane zeros correspond to values of % 
given by 

% = ejzn’# 
(26) 

In other words, an N impulse moving average filter 
has N equispaced zeros on the unit circle. 

Figure 12~ illustrates the pole-zero pattern of the 
5 point moving average filter considered earlier. 
The frequency response, from zero up to the 
sampling frequency is shown in Figure 12b. 

Digital filter mid band gain 

The successive summations involved in a digital 
filtering operation result in a pass band gain which 
is not necessarily unity. It is therefore necessary 
to determine the mid band gain of the filter so that 
the filter output sequence can be scaled down to 
yield unity gain at the pass band centre. For low 
pass filters we need to establish the gain at zero 
frequency, which is given by 

Ko = .E4,1 ww (27) 

for our N-point moving average filter we get 

(33) 

Setting 2 = 1 + 6 

K, = 
1 - (1 + 6)-N 
1 - (1 + q-1 1 

a 

b 

0 0.2 0.4 0.6 0.8 ws 

Figure 11 (a) Pole-zero plot on the z-plane. The filter 
response at a given frequency, a, is the modulus of the 
product of zero vectors, divided by the pole vectors. The 
corresponding frequency response is shown in (b). The 
notch at w,/Z is formed by the close proximity of the 
zero yl, and the pole A,. 
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off-line, since all ‘future inputs’ can be made 
available to the filter simultaneously. 

a 

b 

0 0.2 0.4 0.6 

Figure 12 (a) Pole-zero pattern of 5 point moving average 
filter together with its frequency response (b). 

whence 

K,, = N (29) 

For other types of filter, which may not be low 
pass, K is obtained by letting % approach its mid 
band value in a similar limit process. 

Digital filter phase response 
Considering again our elementary moving average 
filter we investigate the effect of dividing or 
multiplying H(z) by integer powers of %. On the 
%-plane this is equivalent to placing poles or zeros 
at the origin, % = 0. They have no effect on the 
shape of the filter impulse response except that the 
response is shifted in time, forwards one sample 
interval for each pole at % = 0 and backwards for 
each zero at % = 0. For example, the two filters 

H,(z) = g 
- 

H+(z) = 
(1 -%-“) %-3 

1 -%-I 

have the following recurrence relationships: 

H,(z): y(n) = y(n-1) +X(n) - x(n-5) (31a) 

H+(z): y(n) = y&l) + x(72-3) - x(n-8) (31b) 

The operations involved are identical except that 
the nth output of the H-s(%) is derived from input 
samples which occur three intervals earlier than 
those used by H,(z); the output is thus delayed 
in the case of H 

-s& 
z). In a similar fashion, multi- 

plying Ho(z) by % would produce a filter whose 
nth output corresponded to input samples x(n+3) 
and x(n-2); it is advanced in time such that it 
depends upon input samples which occur later 
than its own position in time. This is a feasible 
operation in situations where data is processed 

Time shifts of this nature are equivalent to phase 
shifts in the frequency domain. Multiplication by 
%m has the effect of multiplying the frequency 
response by e’ mwT. That is to say, it advances the 
phase spectrum by mwT radians. Digital filters 
whose poles and zeros lie either at % = 0 or on the 
unit circle have a linear phase characteristic; this 
means that the phase shifts imposed by the filter 
are proportional to frequency. Linear phase shift 
is a very useful characteristic since it implies that 
the temporal relationships between frequency 
components in a signal are preserved in a filtering 
operation and only the amplitude is affected by 
the filter. 

A zero phase shift filter does not advance or delay 
any frequency components. This characteristic 
is particularly useful when one wishes to study 
phase spectra on a digital computer, since it avoids 
the + A range limitation associated with software 
ARCTAN functions. For a digital filter to impose 
zero phase shift, it must have an impulse response 
which is symmetrical about t = 0. For our 5 point 
moving average filter the %-transform becomes 

H(t) = 
(1 -%-“) %q 

1 -%-l (32) 

which gives the recurrence relationship 

y(n) = y(n - 1) + x(n + 2) -x(n - 3) (33) 

It should be clear that one of the conditions for 
such symmetry is that the filter impulse response 
consists of an odd number of samples; this implies 
that the r-plane will be divided by an odd number 
to get the positions of the filter zeros. 

Synthesis of simple digital filters 
We will now describe the steps involved in the 
design of simple filters, which have all their zeros 
either on the unit circle or at the origin of the 
%-plane. 

Step 1. Remembering that the unit circle corres- 
ponds to thejo axis between zero frequency and 
o,, mark out band centres and the approximate 
position of the zeros on the unit circle. 

Step 2. Reorganise all these points to lie on an inte- 
ger dividend of the unit circle. 

Step 3. Superimpose poles and zeros at band centres. 

Step 4. Build the factors in the %-transform, H(Z). 
Each factor will consist of pairs of poles or zeros, 
symmetrical about the real axis. Consider a zero pair 
situated at radius r, frequency o. These form a 
factor in H(r) thus 

H(z) = (z - de) (z - re+) 

where 8 = wT 

(34-a) 
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0 0.2 0.4 0.6 0.8 
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Figure 18 The z-plane (a), impulse response (b) and frequency 
response (c) of a simple zero phase low pass filter. (d) shows a 
twelve second record of e.m.g. taken from the serosal surface of 
the canine duodenum. It consists of high frequency components 
(spikes) superimposed on low frequency activity (the pace-setter 
potential), (e) shows the e.m.g. record after filtering with this low 
pass design. 

multiplying out we get 

H(Z) = z2 + r2 - 2r .% case (34b) 

on the unit circle T = 1 and 

w = 22 + 1 - 2.Z case (344 

If co& can be chosen such that it is the quotient of 
two integers then the coefficients in the recurrence 
relationship become integer and the filter can be 
implemented using integer arithmetic operations, 
with subsequent savings in speed and data array 
space. 

Step 5. Multiply out the relationship 
Y(z)/X(z) = H(z) and derive the recurrence 
relationship. 

Step 6. Test the filter on a specially constructed or 
chosen data set. If low side bands are required, the 

filter can be applied to the data twice by squaring 
H(r) before deriving the recurrence relationship. 

We now consider three design examples. 

Example 1: Lowpass filter. First zero at about 8 Hz. 
Sampling rate 100 Hz. Low side band levels. 

The z-plane of Figure 13 has the first zero at 8.3 Hz. 
Poles and zeros have been squared to give low side 
band levels. For 1 + N divisions of the unit circle 
the t-transform is 

H(z) = (l 
_ZN+l 2 

) 
zN(l 4)” (354 

We have chosen N = 11, dividing the unit circle by 
12, The recurrence relationship is 

r(n) = 2y(n-1) -y(n-2) + x(n-N-2) -2i+ - 1) 

+ x(n+N) 

with midband gain (i.e. at d.c.) 

Kc = Qv+1)2 

a 

(35b) 

b 

2- 

O- 1 
1 

: 
10 20 30 40 so 

sample no. 

-2- 

C 

0 0.2 Q4 0.6 OB 
d 

Figure 14 The z-plane (a), impulse response (b) , and frequency 
response (c) of a simple band pass filter, band centre at w = ws/4. 
(d) shows the result when this filter is applied to the e.m.g. data of 
the last example. 
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The impulse response of this filter is shown on 
Figure 13b and the frequency response on 13~. 
Figure 13d shows an e.m.g. signal obtained from 
the serosal surface of the canine duodenum, 
digitized at 100 Hz. The signal consists of two 
main components, both of which are of interest 
to the physiologist; these are action potential 
‘spikes’ and slow rhythmic oscillations in trans- 
membrane potential, the so-called pacesetter poten- 
tial or Basic Electrical Rhythm. It is convenient 
to separate these two components for independent 
analysis and digital filters can be used to advantage 
in the process. Figure 13e shows the e.m.g. after 
processing by this simple triangular window filter. 
Clearly the pacesetter potential has been success- 
fully extracted and the higher frequency 
components suppressed. 

Extimple 2: Band pass filter, sampling rate 100 Hz, 
mid band at 25 Hz, zeros at 25 + 8 Hz, side band 
levels not critical. Referring to the z-plane diagram 
of Figure 14~ ,we see that a filter with six pole zero 
pairs at z = elt3i3 , e’l12 and ek213 should be suitable. 

The numerator of H(r) is (1 -z12), yielding twelve 
equispaced zeros. The denominator is built up 
using equation 34c and H(Z) becomes 

H(z) = (1 
1 --,?I2 

+z”) (1 +z2 -Z) (1 +.Z2 +z) (36) 

Multiplying out the denominator we get the relation 
ship 

(1 -2’2) X(Z) = (2” + 2Z4 + 2Z2 + 1) Y(Z) (37) 

which yields the recurrence relationship 

a 
I 7 y(n) = x(n-6) -x(n+6) -2y(n-2) -2y(n-4) 

-Y (n-6) 
(38) 

the gain of the filter evaluated at mid band (Z = ?j) 
is 6. Figures 14b and c show the impulse and fre- 
quency responses of this filter. Its effect on the 
e.m.g. signal of the last example is shown on 
Figure 14d; the low frequency component in the 
signal has been suppressed and the high frequency 
‘spiking’ activity has been extracted by the filter. 

Figure 15 (a) z-plane plot of a notch filter at ~$2 with cut off rate determined by parameter 6. 
(b) shows the impulse responses for values of b equal to 0.3 (top), 0.6, 0.9, and 0.95 (bottom). 
(c) The frequency responses corresponding to the four values of b. 
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Example 3: In many physiological experiments 
mains frequency artefact often appears as an 
unwanted component in the signal under investiga- 
tion. In this example a notch filter is designed to 
reject 50 Hz noise in data sampled at 100 Hz. The 
cut off rate is adjustable, by varying the parameter 
bintherangeO<b<l. 

The z-plane diagram of Figure 15 shows a double 
zero at z = -1, which corresponds to 50Hz. The 
double pole at z = -b controls the sharpness of 
cut off. The z-transform is 

H(%) = (1 +zj2 
(b +z)2 

which yields the recurrence relationship 

r(n) = x(n) + 2x(n-1) +x(n-2) -2by(n-1) 

and zero frequency gain 

K” = (1+46)1 
Figure 15 shows the frequency response of this 
filter for four values of b. It is clear that as the 
poles approach the zeros the influence of the 
zeros becomes more strongly localized at the 
notch frequency. 

CONCLUSION 

This paper has reviewed briefly the four main 
techniques by which signals and systems may be 
described. These were the time domain impulse 
response and the Fourier, Laplace and z-transform 
methods. The relationships between these tech- 
niques provide a powerful conceptual framework 
within which analytical procedures can be 
investigated, z-plane methods enable digital filters 
to be designed for specific applications and provide 

a convenient way by which suitable recurrence 
relationships can be worked out. The midband gain 
and frequency response of digital filters can be 
obtained directly from their z-transform. 

Examples have been given of fairly basic digital 
filters which have simple r-plane patterns, many 
of which have their poles and zeros concentrated 
on the unit circle and at z = 0. Although such 
filters suffice for many biomedical signal processing 
exercises there are, however, some applications 
where the properties required cannot be met by 
these simple designs and more advanced techniques 
are indicated. In the two papers which follow, 
more advanced design methods will be introduced 
and the design compromises which are frequently 
found to be necessary in practice will be discussed. 
The relationships between the filter impulse 
response shape and side lobe generation in the 
frequency response will be studied in the context 
of a set of low pass filters. The problems associated 
with the design of high pass digital filters will be 
discussed and techniques will be given which 
provide for the derivation of high pass and band- 
pass filters from low pass designs. The Bilinear 
Transformation will be introduced as a technique 
which provides for the design of the digital equiva- 
lents of analogue filters avoiding serious aliasing 
phenomena in the frequency response. In the final 
paper these techniques will be used to develop 
digital Butterworth and Chebychev filters. 
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