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Exercise 7.5.5
Repeat Example 7.5.5 using the GMDAS algorithm.

Hint
See the hint in the previouns exercise to obtain a hard clustering from the a posteriori probabilities.

7.5.2 Nonhard Clustering Algorithms

In contrast to the previously examined algorithms, the algorithms in this category assume that each data
vector may belong to (or may be compatible with) more than one cluster up Lo a certain number.

Fuzzy c-Means Algorithm

In the fuzzy c-means (FCM) algorithm each (compact) cluster is represented by a parameter vector ;,
J=1.....m. Also, itis assumed that a vector . of the data set X does not necessarily belong exclusively
to a single cluster C;. Rather, it may belong simultaneously to more than one cluster up to some degree.
The variable u;; quantifies the “grade of membership™ of x; in cluster C;, and itis required thatu;; € 0. 1]
and L:”:] u;j = 1 for all x;. Once more, the number of clusters, m, is assumed to be known.

The aim of FCM is to move each of the m available /-dimensional parameter vector (representative)
g;. j= 1.....m, toward regions in the data space that are dense in data points. Finally, the algorithm
involves an additional parameter ¢ (1) called the fuzzifier.

IFCM is one of the most populur algorithms. 1t is iterative, starting with some initial estimates,
B1(M,...,0,(0), fordy,...,8,, respectively, and at each iteration r:

rid

* The grade of membership, u#;;(1 — 1), of the data vector x; in cluster Cj, i = 1,...,N, j=1,....m, is
computed, taking into account the (squared Euclidean) distances of x; from all 8;'s, j = 1,...,m.
» The representatives ¢;’s are updated as the weighted means of all data vectors (each data vector .x; is
weighted by ufl(z —1)).
The algorithm terminates when the difference in the values of 6;’s between two successive iterations
is small enough. It returns the values of the parameter vectors (representatives) #,°s and the u;;’s.
i=1,....N.j=1,....m. II a hard clustering is required, we can define C; as the cluster containing all
x; for which uj; = we, k # 4.
To apply the FCM algorithm, type

[theta. U.obj_ fun] = fuzzy_c_means(X.m.q)
where

X contains the data vectars in its columns,

m s the number of clusters,

g is the fuzzifier,

theta contains the cluster representatives in its columns,

7 is an N xm matrix containing in its ith row the grade of membership of ; in the m clusters,

olyj_ fun is a vector whose rth coordinate is the value of the cost function, J, for the clustering
produced at the rth iteration.
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Remarks
* Like all previously presented cost function optimization algorithms, FCM imposes a clustering
structure on X, even if this is not physically justified.

*  FCM stems from the minimization of the cost function
N oom
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where # = [A7 ,....8717, subject to the constraints uij € [0, 11and 3 ;7w = |. That is, J(8,U) is
a weighted sum ul the distances of all x;’s from all £;'s.

= The involvement of g is critical in fuzzy clmtermg Typical values of ¢ are in the range [1.5,3]
|Theo 09, Section 14.3].

* The algorithm is sensitive in the presence of outliers hecause of the requirement that Z:“:l
for all x;.

= Other fuzzy clustering algorithms where hypercurves of the second degree or hyperplanes are
used as representatives have also been proposed. These are mainly useful in image processing
applications | Theo 09, Section 14.3.2].

us;,- = |

Exercise 7.5.6
Repeat Example 7.5.1, using FCM with ¢ =2.

Exercise 7.5.7
Repeal Example 7.5.3, using FCM wilh g =2.

Exercise 7.5.8
Repeat Example 7.5.5, using FCM with ¢ =2.

The next exercise shows the influence of the fuzzifier parameter ¢ in the resulting clustering.

Exercise 7.5.9

Apply the FCM on the data set X3 generated in Example 7.5.1 for g =2, ¢ = 10, and ¢ = 25. Define and plot
the three corresponding hard clusterings, as discussed previously. Compare the uy; parameters and the 8;'s
for the three cases and draw conclusions.

Hint

For low values of ¢ (e.g.. ¢ = 2), each data vector turns out to helong almost exclusively to a single
cluster | Theo 09, Section 14.3]. That is, for each x;, only a single u; has a very high value (above 90%)
among Uil,. .. uim. However, as ¢ increases, the u;;’s for each data vector x; tend to become equal to
= ={).25. Fepemallv in the case where g = 25, this leads to a clustering that does not correspond to the

m
true underlying clustering structure of X5,

The next example shows the effect of outliers on the performance of the FCM.

L
Example 7.5.7. Apply the FCM algorithm on the data set X7 generated in Example 7.5.6. Produce a
hard clustering, as previously discussed, and plot the results. Comment on the grade of memberships of
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the data points in the two obtained clusters. Compare the resulting representatives with those obtained
from the application of k-means and PAM on X7.

Solution. To apply the FCM algorithm on X7, type

[theta U,obj_funl = furzy_c_means (X7 m, q)

To obtain a hard clustering using U, type
Law,bell=max(lU"):

where bel contains the cluster labels of the data vectors.
Plot the clustering results, using different symbols and colors for vectors that belong to different clusters,
as in step 1 of Example 7.5.1 (see Figure 7.8).

Observation of the grade of memberships reveals that

+  For the first 100 points, the grade of memberships in cluster Cy is significantly higher (=>89.4%)
than that in cluster Co (<10.6%) (see [igure 7.8).

e For the next 100 points, the grade of memberships in cluster Cz is significantly higher (>-97.2%)
than that in cluster Cy (=2.8%).

*  For the last 16 points (outliers), the grade of memberships in clusters €} and C; are significant
(=60.62% for 1 and =30.10% for C2), so their effect on the computation of hoth £ and &, is not
negligible.

Comparing the results shown in Figure 7.8 with those in Figure 7.7, we observe that the estimates of

t (the representative of the upper right cluster) are better for k-means and PAM than for FCM (this is

hecause the outliers have no effect on the estimation of 82 in k-means and PAM, which is not the case in

FCM), and that the estimates of &1 (the representative of the other cluster) are betier in PAM and FCM

than in k-means. in the sense that in PAM and FCM #, remains close to the main volume of the data set.
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FIGURE 7.8

Clustering obtained by FCM on data set X5 in bxample /.5.7. The three lower left groups of points arc from
cluster 1 the upper right group of points canstifute cluster ;.
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This happens because in FCM the outliers contribute to the estimation of &) by (at least) 30%, while in
k-means they contribute by 100% (since in the hard clustering case a vector belongs exclusively (100%%)
to a single cluster). [

Possibilistic c-Means Algorithm

This algorithm (known as PCM) is also appropriate for unraveling compact clusters. The framework
here is similar to the one used in FCM: Each data vector x; is associated with a cluster C; via a scalar u;;.
However, the constraint that all u;’s for a given . sum up to | is removed (it is only required that they
lie in the interval |0, 1]). As a consequence, the uy;’s (for a given x;) are not interrelated anymore and
they cannot be interpreted as “grade of membership™ of vector x; in cluster Cj, since this term implies
that the summation of u;;’s for each x; should be constant. Rather, u; is interpreted as the “degree of
compatibility” between x; and C;. The degree of compatibility between x; and Cj is independent of that
between x; and the remaining clusters.

As with FCM, a parameter g (> 1) is involved in PCM. However it does not act as a fuzzifier as it
was the case in FCM. Also. in contrast to FCM, PCM is less sensitive in knowing the “exact” number
of clusters. Rather, an overestimated value of m can be used (see also the remarks given below). A set
of parameters 7;.j = 1.....m, cach one corresponding to a cluster, is also required (loosely speaking,
they are estimates of the “size” of the cluster [ Theo 09, Section 14.4]). Like k-meuns and FCM, PCM’s
goal 15 to move the ¢;’s to regions of space that are dense in data points.

PCM is iterative. It starts with some initial estimates, ¢, (0).....8,,(0), for 81,...,8,, respectively,
and at each iteration,

* The “degree of compatibility”, u;;(r — 1), of the data vector x; tocluster C. i = 1,... . N,j=1,....m,
is computed, taking into account the (squared Euclidean) distance of x; from #; and the parameter ;.
= The representatives, #;’s, are updated, as in FCM, as the weighted means of all data vectors (each
data vector x; is weighted by uf-}(r — 1.
The algorithm terminates when the difference in the values of £;’s between two successive iterations is
small enough. It returns the values of the parameter vectors (representatives) ;s and the “compatibility
coeflicients” uy’s. i=1,....N.j=1.....m.
To apply PCM on a data set X, type

[T/, theta] = possibi(X ,m, ela, g, sed, inii_ proc,e_thres)
where

X contains the data vectors in its columns,

m is the number of clusters,

ela is an m-dimensional array whose jth coordinate is the iy; parameter for the cluster Cj,
¢ is the “g” parameter of the algorithm,

sed is a scalar integer used as the seed for the built-in MATLAB function rand,

inif_proc is an integer taking values 1, 2, or 3, with 1 corresponding to the rand_init initialization
procedure, which chooses randomly m vectors from the smallest hyper-rectangular that contains
all vectors of X and its sides are parallel to the axes; 2 corresponding to rand_dara_inir, which



