NEWTON'S
ALGORITHM

14 CHAPTER 5. LINEAR DISCURIMINANT FUNCTIONS

Jialk + 1)) ~ Jalk)) — k)| VJ||* - %q”(k.)v.}*Hv.f.

From this it follows (Problem 12) that J{a{k + 1)) can be minimized by the choice

s
VIHVY'

where IT depends on a, and thus indirectly on %k. This then iz the optimal choice
of n(k) given the assumptions mentioned. Note that if the eriterion tunction J(a) is
quadratic throughout the region of interest, then IT is constant and 5 is a constant
independent of k.

An alternative approach, obtained by ignoring Eg. 12 and by choosing a(k +
1) to minimize the second-order expansion, is Newton’s olgorithm where line 3 in
Algorithm 1 is replaced by

(k) = (14)

alk +1) =a(k) - H™'¥J, (15)

Ieading to the following algorithm:

Algorithm 2 (Newton descent)

¢ begin initialize a,criterion #
2 do

J ac a— H '%.J{a)
4 until H=W.J(a) <

5 return a
s end

Simple gradient descent and Newton's algoritho are compared in Fig, 5.10.

Generally speaking, Newron's algorithm will usually give a greater impravement
per step than the simple gradient descent algorithm, cven with the optimal value
of ntk). However, Newton's alporithm is not applicable if the Hessian matrix H is
singular. Furthermore, even when H is nonsingular, the Q{d") time required for
matrix inversion on each iteration can easily offset the descent advantage. In fact,
it often takes less time to set (k) to a constant 1 that i3 smaller than necessary
and make a few more corrections than it is to compute the optimal (k) at each step
(Computer exercise 1).

5.5 Minimizing the Perceptron Criterion Function

5.5.1 The Perceptron Criterion Function

Consider now the problem of constructing a eriterion Funetion for solving the linear
inecuualities a'y; = 0. The most obvious choice is to let J{a; y1. .., ¥,.) be the number
af sarmples miselassified by a. However, because this function is piecewise constant, it
is obviously a poor candidate for a gradient search. A better choice is the Percepiron
criterion function

Ja) = ZF a'y), (16)

Y=

A4 MINIMIZING TITE PERCEPTRON CRITERION FUNCTION 15

Figure 5.10: The sequence of weight vectors given by a simple gradient descent method
(red) and by Newton’s (second order) algorithm (black). Newton's method typically
leads to preater improvement per step, even when using optimal learning rates for both
methods. However the added computational burden of inverting the Hessian matrix
used in Newton's method is not always justified. and simple descent may suffice.

where }(a) is the set of samples musclossified by a. (If no samples are misclassified,
Y is empty and we define J, to be zero.) Since a'y < 0 F y is misclassified, J,(a)
is never negative, being zera anly if a is a solution vector, or if a is on the decision
boundary. Geometrically, J,(a) is proportional to the sum of the distances from the
misclassified sanples to the decision boundary. Figure 5.11 illustrates Jp for a simple
two-dimensional example.

Sinee the jth component of the gradient of J, is 8.0, /da,;, we see from Tiq. 16 that

Vi = (-¥) (17)

ye¥
and hence the update rule becomes
alk+1) =alk) +n(k)> vy, (18)
¥V
where V. is the set of samples misclassified by a(k). Thus the Perceptron algorithm

150

Algorithm 3 (Batch Perceptron)

1 begin initialize a, n(-), criterion A, k=10
p do k—Fk+1
3 a—a+nk)} ¥y
¥
4 until 5{k) »" vy« @
YENVL

5 return a
6 end

RATCH
TRATNING

16 CHAPTER 5. LINEAR DISCURIMINANT FUNCTIONS

Figure 5.11: Four learning criteria as a function of weights in a linear classifier. At the
upper left is the total number of patterns misclassified, which is piccewise constant
and hence unacceptable for gradient descont procedures. An the npper right is the
Perceptran criterion (Tiq. 16), which is piccewise linear and acceptable for gradient
descent. The lower left is squared error {Tiq. 32), which has nice analytic properties
and is uscful even when the patterns are not linearly separable. The lawer right is
the square crror with margin (Tg. 33). A designer may adjnst the margin b in arder
to force the solution vector to lie toward the middle of the b = (0 solution region in
hopes of improving generalization of the resulting classifier.

Thus, the batch Perceptron algorithm for finding a solution vector can be stated
very simply: the next weight vector is obtained by adding some multiple of the sum
af the misclassified samples to the present weight vector. We nse the term “hatch®
to refer to the fact that (in general) a large gronp of samples is nsed when com-
puting each weight update. (We shall soon see alternate methads based on single
samples.) Figure 512 shows how this algorithm yvields a solution vector for a simple
two-dimensional example with a(1) = 0, and (k) = 1. We shall now show that it
will vicld a solution for any lincarly separable problem.

A4 MINIMIZING TITE PERCEPTRON CRITERION FUNCTION 17

s

e

SRS
A

Figure 512: The Pereeptron eriterion, Jy, is plotted as a finction of the weights oy
and ag for a three-pattern problem. 'The weight vector begins at 0, and the algorichm
sequentially adds to it vectors equal to the “normalized” misclassified patterns them-
selves. In the example shown, this sequence is ¥, ¥z, ¥, ¥s. at which time the vector
lies in the solution region and iteration terminates. Nate that the second update {(hy
¥s) takes the candidate vector farther from the solution region than after the first
update (cf. Theorem 5.1. (In an alternate, batch method. @/l the misclassified points
are added at each iteration step leading to a smoother trajectory in weight space.)

5.5.2 Convergence Proof for Single-Sample Correction

We shall begin our examination of convergence propertics of the Perceptron algo-
rithm with a variant that is casier to analyze. Rather than testing alk) on all of the
samples and basing our correction of the sct)y of misclassified training samples, we
shall consider the samples in a sequence and shall modify the weight vector when-
ever it misclassifies a single sample. For the purposes of the convergence proof, the
detailed nature of the sequence is unimportant as long as every sample appears in
the sequence infinitely often. The simplest way to assure this is to repeat the sam-
ples cyelically, though from a practical point of view random selection is often to be
preferred (See. H.8.5). Clearly neither the batch nor this single-sample version of the
Perceptron algorithon are on-line since we must store and potentially revisit all of the
training patterns.

Two further simplifications help to clarify the exposition. First, we shall tem-
porarily restrict our attention to the case in which 5(k) is constant — the so-called
fired-increment case. 1 is clear from Fe. 18 that if () is constant it merely serves to
scale the samples; thus, in the fixed-increment case we can take (i) = 1 with no loss
in generality. The second simplification merely involves notation. When the samples

FIXFD
TNCREMENT

