

Universidade Federal de Ouro Preto Curso de Engenharia de Controle e Automação Circuitos e Dispositivos Eletrônicos— CAT 165 Profa. Adrielle C. Santana Prática 4: Transistor Bipolar

Análise quantitativa

As seguintes aproximações podem ser utilizadas na análise dos circuitos de interesse: $I_C \approx I_E$ e $I_C \approx \beta.I_B$ onde β é o ganho de corrente do transistor. Desta forma, no circuito da Figura 1, tem-se para a malha de base:

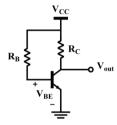


Figura 1

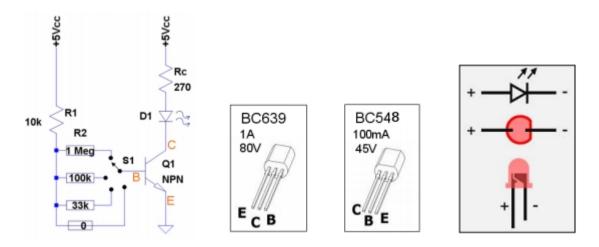
$$V_{CC} = R_B \cdot I_B + V_{BE}$$

em que V_{BE} pode ser aproximado para 0,7V. Para a malha de coletor,

$$V_{CC} = R_C \cdot I_C + V_{CE}$$

Desta forma, para uma corrente de coletor, o resistor de base é escolhido de forma apropriada. A dificuldade é que o ganho de corrente β apresenta variações significativas mesmo para um mesmo transistor (por exemplo, de $\approx 40 \sim 300$), dependendo da corrente de coletor, da temperatura, por exemplo. Quando deseja utilizar-se o transistor como uma chave eletrônica para simplesmente ligar ou desligar uma carga conectada ao coletor, utiliza-se o valor mínimo de β nos cálculos.

Prática

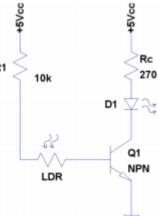

1 – Polarização dependente de β

Material

- Transistor BC 639 ($I_{cmax} = 1A$, $V_{CE0} = 80V$), BC 548 ($I_{cmax} = 0.1A$, $V_{CE0} = 30V$), ou similar;
- LED 10mm
- Resistores (1/8 W): 270Ω , $10 \text{ k}\Omega$, $33 \text{ k}\Omega$, $100 \text{ k}\Omega$, $1M\Omega$.
- Multímetro.
- Fonte de 5Vcc

Considere o circuito abaixo. Monte-o para cada variação do resistor de base e preencha a tabela. Para cada caso, calcule também a corrente de base e observe a variação de β com a corrente de coletor. **Meça as correntes a partir das tensões nos respectivos resistores. Não se esqueça que incluir o resistor R**₁ **na medida da tensão sobre a base.**

R2	Ib (calculado)	Ib (medido)	Ic (medido)	$\beta = \frac{Ic (medido)}{Ib (medido)}$	V _{CE} (medido)	V _{BE} (medido)
0Ω						
33 kΩ						
100 kΩ						
1 ΜΩ						

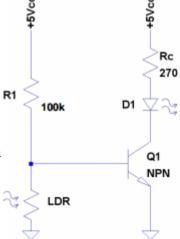

2 – Sensor de luz 1

o LDR (*light dependent resistor*) é um componente cuja resistência é "baixa" no claro e "elevada" no escuro.

Material

- Transistor BC 639, BC 548 (NPN) ou similar;
- LED 10mm
- Resistores (1/8 W): 270 Ω e 10 k Ω
- LDR
- Multímetro.
- Fonte de 5Vcc

Inicialmente, meça a resistência do LDR no claro (use a luz de seu celular se quiser, para aumentar o efeito) e no escuro (cubra-o com um anteparo opaco ou o dedo). Monte o circuito, observe e comente seu comportamento à medida que a luz incidente no LDR varia. Meça as correntes de base e coletor (através das tensões em R1 e Rc) nas condições extremas de luminosidade.

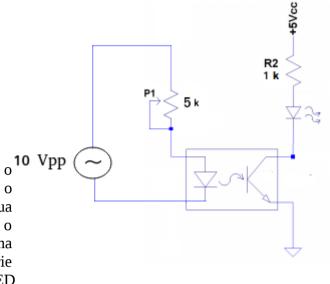

3 - Sensor de Luz 2

Material

- Transistor BC 639, BC 548 (NPN) ou similar;
- LED
- Resistores (1/8 W): 270 Ω e 100 k Ω
- LDR
- Multímetro.
- Fonte de 5Vcc

Monte o circuito e verifique seu funcionamento.

Observe, calcule e comente o que ocorre com a corrente de base com a variação da luminosidade nas condições extremas de luminosidade. $I_{\rm B}=I_{\rm R1}\text{-}I_{\rm LDR}$.



4 - Acoplamento óptico

Material

- LED vermelho ou verde 10mm;
- Optoacoplador PC817
- Resistor (1/8 W): $1k\Omega$.
- Potenciômetro de $5k\Omega$.
- Multímetro.
- Gerador de função com 10Vpp e 1Hz.
- Fonte 5Vcc.

circuito ao lado, configure Monte potenciômetro para qualquer valor que seja o suficiente para ver LED 0 variar luminosidade com a entrada senoidal e comente o que você observa relacionando com a corrente na base do transistor interno do optoacoplador. Varie o potenciômetro, observe o que ocorre com o LED e comente o que está acontecendo, mais uma vez, relacionando com a corrente de base do transistor.

Bibliografia

Prof. Maurílio Nunes Vieira . Laboratório de Eletrônica Analógica e Digital . Apostila de aula. Departamento de Eletrônica – UFMG .