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Abstract. Starting from an anomalous monomeric system, where particles interact via a two-scale core-
softened potential, we investigate how the system properties evolve inasmuch as particles are put together to
form polymers whose chain size varies from 4 up to 32 monomers. We observed that the density and diffusion
anomaly regions in the pressure versus temperature phase diagram of the monomeric system is smaller in
the monomeric system when compared with the polymers. We also found that the polymers do not fold into
themselves to form solid spheres instead they tend tomaximize the chain-fluid contact.Also,Rouse andReptation
models can be employed to describe the polymers diffusive behaviour. But, in contrast to results of simulations
where mere interacts via Lennard-Jones potentials, our results shown a much shorter entanglement length of at
most 8 monomers.
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1. Introduction

Traditional solids and liquids are made of atoms and
molecules at the very smallest scales and physical and
chemical behaviors of these systems are governed by
the characteristic of these small scales. Complex fluids
even thought are also made of atoms and molecules,
form larger structures that are responsible for many of
their properties. This is the case of the water that due to
its hydrogen bonds forms tetramers and octamers which
lead to the presence of more than seventy anomalies.1

These phenomena are governed by the transient clusters
formed by water whose origin are the hydrogen bonds.
But water is not unique. Other materials (i.e., SexTe1−x ,
Ge15Te85 and liquid sulfur) display unusual behaviour in
which system expansion upon cooling is observed.2–11

Such anomaly, called density anomaly, is not an isolated
case. Anomalous behaviour in compressibility, refrac-
tive index, speed of sound, solubility, heat conductivity
and many others have been observed for liquid water.1

*For correspondence
†Dedicated to the memory of the late Professor Charusita
Chakravarty.

Thanks to the fact that the anomalies in these
materials—and in particular in water—are related to
length scales larger than the usual atomistic or molec-
ular distances, the use of coarse-grained models to
study these systems becomes an interesting tool. In
the case of complex water-like systems two charac-
teristic length scales are present: an open structure
and a closed structure. Consequently, these anoma-
lous systems are modeled by core-softened shoulder
potentials.12–26 These models produced pressure ver-
sus temperature phase diagrams which reproduce the
anomalies present in the tetrahedral liquids. They also
suggest a mechanism behind the anomalies.16,17

In addition to water and to the tetrahedral fluids men-
tioned above, polymers are also complex fluids. They
are made of atoms and molecules which are organized
to form larger structures. The behavior of the polymeric
materials can be explained by taking into account these
intermediate scales of organization and therefore the
use of coarse-grained methods becomes an interesting
strategy to study polymers. In principle just one length
scale would be necessary. In the case of homopolymers,
the monomer-monomer interaction would represent this
length scale.However, there are a number of polymers in
which just one length scale would not be able to account
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for the complexity of the system. An example of com-
plex fluid of this type is the star polymer. A star polymer
consists of several linear polymer chains connected to a
central core, forming a core-brush structure. The inter-
action between two neighbor star polymers depends on
two length scales: the core-brush interaction (that can
be a van der Waals potential) and the brush-brush (soft
repulsive) contribution energy. Then, we can raise the
question whether a system made of star polymers with
the interactions represented by core-softened potentials
would exhibit the same anomalies present in water.

In this work we address this question by studying the
pressure versus temperature phase diagram of polymers
interacting through a core-softened potentials. Density
and diffusive anomalies are investigated as a function of
polymers length. In addition, we test the ability of the
standard diffusive models (Rouse and Reptation mod-
els) in describing the dynamics of anomalous polymeric
fluids. The paper is organized as follows. In theSec. 2 the
simulations are described, Sec. 3 results and discussions
are presented and conclusions are shown in the Sec. 4.

2. Simulation details

Molecular dynamics simulations were performed as imple-
mented in theLAMMPSpackage.27 Eachpolymer ismodeled
as N monomers with the same mass (m) and diameter (σ ),
connected through springs with constant k = 3000 in units
of force/length and equilibrium distance σ . Non-bonded
monomers from the same polymer or belonging to a different
polymer interact through a soft-core potential developed by
da Silva et al., 25 given by
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while bonded monomers have such an interaction turned off.
Here, ε is the interaction energy strength which turns to be the
energy unit in this work. Note the first term in the potential is
the well-known Lennard-Jones potential, and the remaining
two terms are gaussians with a = 5.0, r0/σ = 0.7, c = 1.0,
r1/σ = 3.0, b = −0.5, and d = 0.5. The resulting potential
shape with these parameters can be seen in Figure 1.

The temperature was kept constant by means of the Nosé-
Hoover thermostat with time constant 0.1 and timestep 0.001
(both given in terms of σ

√
m/ε). A total of 2×106 steps were

carried out, fromwhich the first half was discarded in order to
ensure the equilibrium of the system in the production stage.

Different degrees of polymerization were considered,
in which 256 chains composed by N = 4, 8, 16, and
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Figure 1. Pair potential as a function of
particle distance used in this work.

32 monomers were used. Thermodynamic quantities are
expressed in terms of the unit of length, σ , energy, ε, and
the Boltzmann constant, kB , so they become dimentionless.
For example, pressure, temperature, and force are given in
terms of ε/σ 3, ε/kB , and ε/σ , respectively.

3. Results and Discussion

First, we verify the state of the solution. The radial dis-
tribution function was studied for temperatures T ∗ =
0.2−4.0 and densities ρ∗ = 0.1−0.7 showing a char-
acteristic behavior of liquid state, therefore our system
was liquid for all the temperatures analyzed.
Next, we studied how each polymer is structured in

its liquid solution. In order to do that, we analyzed
the radius of gyration. According to the Flory’s mean
field approach,28,29 the radius of gyration scales with
N �, where N is the degree of polymerization and � is a
coefficient that determines the quality of the solvent in
which the chain is immersed. The radius of gyration is
calculated as follows:

R2
G = 1

N

〈
N∑
i=1

(−→r − −→r cm

)2
〉

, (2)

where the summation runs over themonomers of a single
chain. For a simple polymer in which the spring is the
only interaction, � = 1/2 and the polymer is in the
coil state. At low temperature and for a bad solvent, the
polymers assume a solid-like form and � = 1/3. For
a good solvent and at high temperatures, the polymer
becomes extended form and � = 3/5.
The figure 2 shows the radius of gyration as a function

of the degree of polymerization for a system at temper-
ature T ∗ = 2 and number density ρ∗ = n/V = 0.4,
where n is the total number of monomers in the solu-
tion and V is the simulation box volume. It is possible
to see that a curve RG ∝ N 3/5 fits well the points
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Figure 2. Radius of gyration as a func-
tion of the degree of polymerization
N for T ∗ = 2 and number density
ρ∗ = n/V = 0.4, where n is the total num-
ber of monomers and V is the simulation
box volume. It is possible to see that the
curve with the coefficient 3/5 fits well the
calculated values of RG showing that the
polymers chains do not form coils. For a
matter of comparison we have also plotted
the curve with coefficient 1/3.

obtained through simulations, in contrast with the curve
RG ∝ N 1/3. This means that in our simulations the
polymers are in the extended state
Next, we address the question if this core-softened

polymer exhibits in some region of pressures and tem-
peratures the density anomaly as the anomaly present
in liquid water. The density anomaly, as explained in
the Introduction, is the property in which liquids expand
under cooling. This anomaly inmonomeric systems can
be modeled by core-softned potentials and, therefore, it
is natural to expect that a polymer with these compet-
ing forces would exhibit this type of anomaly. In order
to confirm this assumption we studied the isochores of
the polymer solution. Thermodynamic identities show
that the temperature of minimum pressure at constant
density (isochores) locates the temperature of maxi-
mum density at constant pressure. Therefore, Figure 3
shows the pressure-temperature phase diagram for poly-
meric systems with different degrees of polymerization
illustrating the temperature of the minimum pressure
along different isochores. The additional points at the
isochores are not show for clarity. All the polymers
show the presence of maximum density. The region
in pressures in which the anomaly is present increases
nonlinearly with the degree of polymerization. This is
consistent with the results from the monomeric25 and
the dimeric systems.24 In the case of the monomeric
system, the size of the density anomaly region is at least
one order ofmagnitude smaller than that of the fluidwith
N = 4. In contrast, the fluids with N = 16 and N = 32
presents similar density anomaly regions size. This is
also consistent with the observations in dimeric sys-
tems for different sizes in which the larger structures
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Figure 3. Pressure versus temperature
phase diagram for the monomeric case (N
= 1) and polymers with chain size of
4, 8, 16 and 32monomers showing the den-
sity anomalous region, i.e., the TMD loci
for different degree of polymerization.

implies additional degrees of freedom . This, however,
reaches a limit what is observed in the N = 16 and
N = 32 cases
Polymers fluids exhibit a diffusion which sharply

differs from that of ordinary Newtonian fluids. Such dis-
tinct behaviour is due to the entanglement between poly-
mers chains that constrains the monomers movement.

One of the first models to describe polymers flu-
ids dynamics was proposed by P. E. Rouse,30 which
assumes that monomers are points that interacts only
through harmonic potential and all complicated inter-
actions are absorbed into a monomeric friction and a
coupling with a heat bath. Such a model correctly pre-
dicts the long-time diffusion for polymers shorter than
the entanglement length. Within such model the mean-
square displacement is proportional to: t1/2 and t for
subsequent time scales.

The Figure 4 shows the mean-square displacement as
a function of time for the polymers with N = 4 and
32 (the other sizes were not presented for simplicity).
We observed that the polymers with the chain length
N = 4 are described by the Rouse model. However,
the polymers with chain length larger than 8 monomers
cannot be described by the Rouse model. In the Figure 4
for N = 32 it is possible to see that there are more than
3 distinct behaviours of 〈R2〉 as a function of time. Here
we illustrate for this long polymer times that are short
to full observe the linear behavior. Longer simulations
and simulations for N = 16 shows the same linearity.

The presence of a conventional polymer fluid whose
chains are larger than the entanglement length, the Rep-
tation model29,31 shows that the diffusion exhibit more
than three regimes. The Reptation model predicts that
the mean-square displacement is proportional to: t1/2,
t1/4, t1/2, and t for subsequent time scales. Our results
shown in the Figure 4 that the same is true for anomalous
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Figure 4. Mean-square displacement
versus time for polymers with different
degrees of polymerization N for ρ∗ = 0.4
and T ∗ = 2.0. We note the changing
behavior with increasing degree of poly-
merization. For N = 4 the mean square
displacement scales linearly with time for
intermediate times. This is not true for
N = 32, for example (see Figure 5). The
transition length seems to be about N = 8,
which is called the entanglement length.
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Figure 5. Mean-square displacement
versus time for polymer fluids with chains
smaller (N = 4) and bigger (N = 32)
than the entanglement length (N = 8). The
points were fitted by Rouse and Reptation
models. Density and temperature were 0.4
and 2.0 for all cases, respectively.

polymer fluids. Our analysis suggests that the repta-
tion regime is reached for a degree of polymerization,
N ≈ 8, much smaller than that of conventional polymer
fluids.29,31

Finally, we address the question if the core-softened
polymer exhibits the diffusion anomaly present inwater.
In water and other tetrahedral liquids as the density
increases the diffusion coefficient grows,what it is know
as diffusion anomaly. In order to answer to this question
the diffusion coefficient versus density was computed
for a number of temperatures.We observe that for a large
range of temperatures the diffusion has a maximum and
a minimum locating a region in which the diffusion is
anomalous.

The Figure 6 illustrates the pressure versus tem-
perature phase diagram in which the location of the
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Figure 6. Pressure versus temperature
phase diagram for polymers with chain size
of 4, 8, 16 and 32 monomers showing the
diffusion anomalous region.

maximum diffusion (upper lines) and minimum diffu-
sion coefficients (lower lines) are located. The range
in temperatures for the dynamic anomalous regions
increases with the increase of the polymer size. This
is probably related to collective effects.

4. Conclusion

In summary we presented results of simulations of
polymeric fluids whose monomers interacts via two-
scale core-softened pair potentials capable of describing
anomalous fluids. We found that investigated polymer
systems display density and diffusion anomalies. The
size of anomalies regions depends on the chain size in
special for very short chain lengths. Rouse and Rep-
tation models can describe the diffusion. However, the
predict entanglement length is very short in comparison
to previous studies on ordinary polymer fluids indicating
a possible relation between short entanglement length
and diffusion anomaly.
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