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Abstract
We investigate—through simulations and analytical calculations—the consequences of uniaxial
lateral compression applied to the upper layer of multilayer graphene. The simulations of
compressed graphene show that strains larger than 2.8% induce soliton-like deformations that
further develop into large, mobile folds. Such folds were indeed experimentally observed in
graphene and other solid lubricants two-dimensional (2D) materials. Interestingly, in the soliton-
fold regime, the shear stress decreases with the strain s, initially as −s 2 3 and rapidly going to
zero. Such instability is consistent with the recently observed negative dynamic compressibility
of 2D materials. We also predict that the curvatures of the soliton-folds are given by

δ β α=r 2 ,c where δ⩽ ⩽1 2, and β and α are respectively related to the layer bending
modulus and to the interlayer binding energy of the material. This finding might allow
experimental estimates of the β α ratio of 2D materials from fold morphology.
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1. Introduction

Graphene has gained much attention from the scientific
community since its discovery because of its unique features.
For example, it has been considered as a possible building
block for circuit components due to its particular electronic
properties. Ideally, deposited graphene should be perfectly
flat. However, although graphene has one of the highest
known Youngʼs modulus, it has a small bending modulus [1].
In real applications, graphene sheets commonly present rip-
ples and folds [2–5], which may change their electronic
structure. For example, theoretical studies suggest that folded
graphene under external magnetic fields act as an inter-
ferometer: it suffers the interference due to the interplay
between gauge fields created by the fold and the external
fields in the region of the fold [6]. Zheng et al have shown
that the calculated Youngʼs modulus, tensile strength, and
fracture strain of folded graphene are comparable to those of
graphene, while the compressive strength and strain are much
higher than those of planar graphene [7].

Folds have been observed in several conditions and in a
variety of forms. For example, they were seen in the top
layers of graphite [8, 9] whereas edge folds in suspended
graphene have been reported as well [10–14]. Yu and colla-
borators were able to obtain the structural information of
wrinkles, such as hight and width, by gold deposition on its
vicinity [15]. Yet, by concomitantly applying compressive
and shear stresses through an atomic force microscopy tip
upon few layer graphene, Barboza and collaborators obtained
structures which appear to be single- and multi-folded gra-
phene [16]. Multiply folded graphene—termed grafold by
Kim and coworkers [17]—were indeed confirmed to exist
and, not surprisingly, its novel electronic structure can be
quite different in comparison to flat graphene [17–19].

Theoretical models suggest that folds in graphene can
change its chemical affinity, since curvatures induce defor-
mations in the σ-bonds of the lattice. Such out-of-plane
deformed bonds could transfer charges to π-orbitals, which
induce localized dipole moments in the graphene surface [20].
This property could lead to localized selective
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functionalization of atoms and molecules. For example,
Tozzini and collaborators have shown that storage (through
adsorption) and release of hydrogen can, in principle, be
obtained by exploiting and controlling the corrugation of
individual layers of graphene [21]. Storage of molecules can
also be achieved by wrapping chemical species into graphene
folds as sandwiches [17, 22, 23].

Given the relevance of graphene folds, it is important to
understand the physics behind the folding process. Bending
orientation, defects, and contamination are probably relevant
to such a process [24–29]. In this work we investigate—
through molecular dynamics and theoretical calculations—the
consequences of uniaxial lateral compression applied to the
upper layer of multilayer graphene. At low strains, the can-
cellation of nonlinear and dispersive effects in graphene gives
rise to a pulse that maintain its shape while traveling at
constant speed. We have found that such solitons evolve into
mobile folds with increasing strains. Our results include the
derivation of curvature radii of some of the main structures
formed during compression in terms of interlayer binding and
bending energies, α and β, respectively. Our results can be
applied to any solid lubricant, such as molybdenum dis-
ulphide and hexagonal boron nitride.

This work goes as follows. In section 2, we describe the
molecular dynamics methodology and the main fold struc-
tures that result from the simulations. In section 3, we develop
analytical models for the fold structures. Section 4, analyzes
the simulation results and compares them with the analytical
models. In section 5, we present our conclusions.

2. Molecular dynamics: methodology and fold
structures

Molecular dynamics techniques were used as implemented in
the package LAMMPS [30]. Carbon atoms were modeled
classically using the adaptive intermolecular reactive empiri-
cal bond order (AIREBO) potential for the C–C interaction
[31]. Our system is composed of two graphene layers, each
containing 1600 atoms. The bottom layer was kept ‘frozen’
during all simulations, i.e., the resultant force on every atom
of this layer was set to zero. Both ends of the top layer were
also maintained frozen: the resultant forces acting upon 32
atoms of each extrema were kept at zero in all simulations.
The periodic boundary condition was used in the y direction,
while directions x and z were finite. The dimensions of the
layers were 207.0 and 18.1 Å in the x and y directions,
respectively. The equilibrium distance between layers was
found to be around 3.4 Å.

Simulations were performed in the canonical ensemble.
The Nosé–Hoover thermostat [32, 33] as implemented by
Shinoda and collaborators [34] was used in order to keep the
temperature T = 10 K. The timestep used was 0.001 ps.

Compressive strain in the upper layer was imposed
along the x direction by moving one of its frozen edges
towards the other edge at constant velocity = =v dx dt 0.1
Å/ps in the x direction. By increasing the strain, different
structures are formed in the upper layer. Here, we focus on

those shown in figure 1. In figure 1(a) it is possible to see
the xz projection of the upper layer in the moment imme-
diately before a soliton-like structure appears. The soliton is
shown in figure 1(b). By further increasing s, two distinct
structures appear in sequence. The first is the standing fold,
shown in figure 1(c). The second is the standing collapsed
fold, as seen in figure 1(d). For studying such structures, we
developed theoretical models which are detailed in the next
section.

3. Analytical model

Our model consists of a continuum two-dimensional (2D)
material, ideally deposited on a substrate that is parallel to the
xy plane. Wrinkles may appear parallel to the y direction, such
that the local height z is a function of x only. The 2D material
is incompressible but can be bent, with a bending modulus β
defined such that the curvature energy per unit length, for a
given curvature radius r, is given by ϵ β= rb

2. We also
consider that the binding energy per unit area between the 2D
material and the substrate is given by ϵ α=a . In this sense, we
considered the zero energy when the 2D material lies
deposited on the substrate. The energy cost to bend the
material is ϵ ℓb b, where ℓb is the portion of the material which
is curved, while the energy to detach the material from the
substrate is ϵ ℓa a, with the corresponding detached length ℓa.

3.1. The soliton structure

Let us first consider the soliton-like structure shown in
figure 1(b). We model this structure with three circle seg-
ments, as shown in figure 2. Considering the continuum
model described above, the formation energy per unit length

Figure 1. Projection of the graphene bilayer into the xz plane
obtained through simulations. (a) The moment immediately before
the soliton formation at strain s = 2.8% (see section 4 for the
definition of the strain). (b) The soliton structure and (c) the structure
we termed as the standing fold, which appear at s = 27.5%. (d) The
structure which appears at approximately s = 28%. We named it as
the standing collapsed fold.
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(along y) of such a soliton is given by

⎛
⎝⎜

⎞
⎠⎟ϵ α θ θ β θ θ= + + +( )r r

r r
2 2 . (1)1 1 2 2

1

1

2

2

As a result of the soliton formation, the 2D material will
have an apparent reduction in length, along x, of magnitude μ.
From figure 2, μ is given by

μ θ θ θ θ= + − +( ) ( )r r r r2 2 sin sin . (2)1 1 2 2 1 1 2 2

If we consider small angles θ1 and θ2, we can approx-
imate equation (2) as

μ θ θ≈ +r r

3 3
. (3)1 1

3
2 2

3

Defining variables βθ≡q r2i i i and α θ≡t r2i i i, with i = 1,
2, equations (1) and (3) can be rewritten as

ϵ = + + +t t q q (4)1 2 1 2

and

μ
α β

= +( )q t q t
1

24
. (5)

2 1 1
2

2 2
2

The profile of the soliton can be found by minimizing its
energy, equation (4), with μ = constant. We find

α βμ= = = =( )t t q q t24 and
1
2

. (6)1 2
2 1 3

1 2 1

Equations (6) lead to

β
α= =r r 2 (7)1 2

⎛
⎝⎜

⎞
⎠⎟θ μ θ μ α

β μ= =( ) ( )
3
2 2

(8)1 2

1 3
1 3

ϵ μ α β μ= ( )( ) 3 24 (9)2 1 3 1 3

⎜ ⎟⎛
⎝

⎞
⎠μ β

α μ=l ( ) 4
3

. (10)
1 3

1 3

From equations (7)–(10) we see that the soliton radii r1
and r2 are independent of μ (and thus must be strain inde-
pendent), whereas the angles θ1 and θ2 scale with μ1 3. This
interesting behavior suggests that for μ → 0, the soliton
localizes and disappears without ‘flattening’. Another inter-
esting behavior is that of the tension f (force per unit length)
necessary to maintain the soliton at a given μ. From
equation (9), we obtain

μ ϵ μ μ= − = −f d d K( ) , (11)2 3

with α β= −( )K 24 2 1 3
. That is, the magnitude of f reduces

with increasing soliton size, and tends to infinity as the soliton
disappears.

3.2. The standing fold structure

For larger values of compressive strain, the soliton structure
evolves to the pattern shown in figure 1(c), and schematically
shown in figure 3. We model this structure as follows. The
profile of the top part is composed by a semi-circle with
radius R1. A stem is formed by two straight lines with length
h, and the basis is formed by quarter circles with radii R2. The
formation energy of such a structure is given by

⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟π α βπ= + + + +( )E R R h

R R
2

1 1
. (12)1 2

1 2

The net length to form this structure can be written as

μ π= − + +( )R R h( 2) 2 . (13)1 2

Equations (12) and (13) reduce to

⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟α μ βπ= + + + +( )E R R

R R
2

1 1
. (14)1

1 2

After minimizing equation (14) with respect to R1 and R2

with μ constant, one obtains

π β
α= =R R

2
. (15)1 2

Figure 2.Model for the soliton formation. r1 and r2 correspond to the
top and basis radii, respectively, along with its corresponding angles,
θ1 and θ2.

Figure 3. Model for the standing fold structure. It has a top part
modeled as a semi-circle with radius R1 connected to the basis
(quarter circles with radius R2) by straight lines with length h.
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3.3. The standing collapsed fold structure

By further increasing the strain, the next type of structure
observed for compressed graphene is schematically shown in
figure 4. It corresponds to the structure shown in figure 1(d)
obtained through simulations. We call this structure a stand-
ing collapsed fold. We modeled such a structure as an arc of
circle of radius 1, forming the top of the structure, which is
connected to the basis by arcs of circle of radius 2. ϕ ϕ=g ( , )1 1 1 and  ψ ψ=g ( , )2 2 2 are the functions
that define the head and the basis curves in polar coordinates,
respectively. g1 and g2 intercept each other at the point P. In
this sense,  ϕ γ ψ θ= = =g g( , ) ( , )1 1 2 2 . Since
γ π θ= −2 , we find that


 θ π= +( )2

. (16)1

1 2

The formation energy is given by

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥    π θ α β= + + + +( )( 2 )

1 1
. (17)1 2

1 2

The variable θ can be eliminated from equation (17) with
the help of equation (16). Thus, the energy reduces to

⎛
⎝⎜

⎞
⎠⎟    απ βπ= + + +( )2

1 2
. (18)1 2

1 2

By minimizing with respect to 1 and 2, i.e., per-
forming ∂ ∂ =R 01 and ∂ ∂ =R 0,2 one finds

 β
α

β
α= =2

2
and 2 . (19)1 2

It is possible to calculate the length of the rope, ,
detached from the substrate as a function of α and β. By

simple inspection of figure 4, we see that

  π θ= + +( )( 2 ) . (20)1 2

Once  = 22 1, equation (16) gives θ π= 6. This
result, along with equations (19) and (20), gives

 π β
α= 2 2 . (21)

Another important result we can derive from this model
is the minimum distance between the base arcs d. From
figure 4, we find that

⎡⎣ ⎤⎦  θ
β
α

= + −

= −( )
( )d 2 cos

2
2

3 3 4 , (22)

1 2 2

where we have used equation (19) and θ π= 6.

4. Simulation results

We define the compressive strain in the upper layer as
=s t vt L( ) x, where Lx is the dimension of the layer in the x

direction and t is the time. In this sense, the strain is zero at
the initial time, t = 0, and it is at maximum (s = 100 %) when

=vt Lx.
In order to characterize the structures shown in figure 1,

namely, the soliton, the standing fold and the standing col-
lapsed fold, we calculated the tension versus the compressive
strain in the upper layer. The tension was calculated as P Lxx y,
where Pxx is the virial contribution for the component of the
stress tensor in the x direction, and Ly is the dimension of the

Figure 4. The proposed model for the standing collapsed fold. The
top and the basis are arcs of a circle with radii R1 and R2,
respectively.

Figure 5. Tension in the upper graphene layer as a function of the
induced strain s. At s = 0, the tensile force upon the graphene layer is
zero. By increasing s, the graphene behaves as an elastic medium
until the soliton formation at s = 2.8%. At this point, internal forces
are released, causing the discontinuity seen in the figure. For >s 2.8
the curve decays as −s 2 3 which is explained by our theoretical model
(see section 3). Arrows (a)–(d) correspond to the instants where the
structures seen in figure 1 appear.
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simulation box in the ity direction. Pxx is given by

∑=
=

P
V

x f
1

, (23)xx

i

N
i

x
i

1

where V is the volume of the simulation box, N is the number
of particles, xi is the coordinate x of particle i, and fx is the
component of the resultant force acting on particle i in the x
direction.

Our tension versus strain results are summarized in
figure 5. Arrows (a)–(d) indicate the instants where the
structures shown in figure 1 appear. In the first stages of
compression, the layer behaves elastically, with linear
response to the applied strain. The straight, continuous line
corresponds to a linear fitting through the data whose angular
coefficient was found to be 0.21 Nm−1. After reaching a
maximum tension τ value, at s = 2.8%, the soliton appears,
releasing internal forces, which explains the discontinuity in
the stress–strain curve. Further increasing s, the tension
decays towards zero with a −s 2 3 dependence. Such a
dependence is explained by our analytical model,

equation (11). The fitting for >s 2.8% (dashed line) was
made by using a function in the form τ κ= −s 2 3, where
κ = 0.003 Nm−1.

We have also compared predictions of our theoretical
models with the results from the simulations. Figures 6–8
show the structures seen in figures 1(b)–(d), respectively,
superimposed with continuous curves that correspond to
curvatures as obtained by our models.

The results from the models depend on the interlayer
binding energy and the bending modulus of the graphene (α
and β, respectively), always in the form β α , which turned
out to be an intrinsic length scale. There have been several
attempts to determine the graphite binding energy, both
experimentally [35–37] and theoretically [38–42]. To the best
of our knowledge, the most recent, direct graphite binding
energy measurement is given by Liu et al, who have obtained
α = 31 meV/atom [43]. For the graphene bending modulus,
the most direct measurement is due to Barboza and colla-
borators [1] who have found β = 1.64 eVÅ2/atom. Thus, the
intrinsic length scale seen in our models is given by

β α = Å7.0 . (24)

The soliton model (figure 2) predicts that the radii of both
basis and top must be the same. We have found such cur-
vature radii = =r r1 2 9.9 Å (see equation (7)). In order to
compare the model and simulation results, we have used
equation (8) with μ = 3.0 Å (estimated from simulations) for
drawing the soliton as predicted by our model. This leads to
θ = °44 . The resulting curve is seen in figure 6 as a line, while
the circles mark the position of carbon atoms, obtained by
simulations.

Figure 7 shows the standing fold structure as obtained by
simulations. This structure is seen when the strain s is around
27.5% (see figure 5). We have modeled such a structure as
having circumference arcs in the top (with radius R1) and in
the basis (radius R2) (see figure 3). Top and basis are con-
nected by straight lines with length h. We obtained = =R R1 2

8.8 Å (see equation (15)). Figure 7 shows the model

Figure 6. Dots: the soliton as obtained in our simulations.
Continuous curve: result from the soliton model (equations (7)
and (8)).

Figure 7. Dots: the standing fold structure, as obtained in the
simulations (also seen in figure 1(c)). Continuous curves: curvature
radii as obtained from the analytical model, see equation (15) and
relation (24).

Figure 8. Dots: collapsed standing fold structure, also seen in
figure 1(d). Countinuous curve: analytical model; see equations (19)
and (24).
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predictions (lines) along with simulations results (circles). We
see that in spite of the modelʼs simplicity, it gives reasonable
results compared to simulations without the need of any
information from it other than the bending modulus and the
binding energy values. Therefore, such models can be used to
make predictions on the fold geometry of other solid lubri-
cants and vice-versa, that is, to predict the value of the ratio
β α based purely on fold geometry.

Finally, figure 8 shows the standing collapsed fold,
which was modeled as having R1 for the top radius and R2 for
the basis (as shown in figure 4). We concluded that the
condition that minimizes the energy of the collapsed fold is

=R R22 1, given by equations (19). Our findings are
R1 = 4.95 Å and R2 = 9.9 Å. Note that the laterals of this
structure tend to approach the bilayer distance (around 3.4 Å)
for big strains as expected. The result from the model for such
a distance is d = 5.9 Å (see equation (22)), which lies in the
same order of magnitude. Since we have not considered the
occurrence of a van der Waals interaction between layers, it is
not surprising we have found a bigger value for such a dis-
tance than the expected value of ∼3.4Å.

We have found from the standing collapsed fold model
an expression for the length of the layer which is detached
from the substrate as a function of α, and β, in the moment it
is formed (equation (21)). We estimate such a value from
simulation as 84 Å, while equation (21) gives 62 Å.

In order to investigate the stability of the standing col-
lapsed fold structure, we proceeded as follows. As stated in
section 2, strain was induced in the x direction of the upper
layer by moving one of its extremities towards the opposite
one at constant velocity. After a certain maximum strain, we
inverted the movement direction, keeping the velocity mod-
ulus, which continuously reduces the strain. During this
‘forward backwards’ process, we monitor the height of the
structures in relation to the upper layer against the induced

strain. The results are summarized in figure 9. From this
figure, we see all the stages approached in this work, namely,
the soliton (see the jump at around s = 2.8% which char-
acterizes its appearance) and its continuation until the
standing fold takes place at around =s 27.5%. At s = 28%,
we observe the transition from standing fold to standing
collapsed fold with linear dependence between height and
strain for >s 28%. When the direction of the movement is
inverted, the standing collapsed fold becomes stable for
strains below s = 28%. Indeed, the ‘uncollapsing’ transition
occurs at s = 13.4%. Figure 9 has the characteristics of a
hysteresis curve, in which the state of the system depends not
only on the strain at a certain time, but also on its history.

5. Conclusions

This work is an investigation—through molecular dynamics
and analytical calculations—of a laterally compressed gra-
phene monolayer atop uncompressed graphene (simulating an
uncompressed graphite surface). Under compression, several
structures appear in the top graphene layer. Three structures
can be clearly identified: the soliton, the standing fold, and the
standing collapsed fold structures. We propose models for
each of these structures, and we have determined curvature
radii for those structures in terms of α and β, the interlayer
binding and bending energies, respectively. Our models
indicate that all structures have characteristic radii in terms of

β α2 , as seen in equations (7), (15), and (19). This result is
general and can be applied to other solid lubricants, such as
MoS2, talc, and hexagonal boron nitride, for example, to
estimate the ratio β α from fold morphology. We have also
found that the standing collapsed fold shows bi-stability in
relation to the strain s, depending on the path for achieving
critical strains. Upon increasing strain, this structure appears
at s = 28%. Once it appears, if the strain is decreased, the
standing collapsed fold remains stable until s = 13.4%,
showing a hysteresis behaviour.
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