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Molecular dynamics (MD) employing the Lennard-Jones (LJ) interaction potential was used to compute the heat
capacities of argon at constant volume CV and constant pressure CP near the critical point very close to the asymp-
totic region. The accurateMD calculation of critical divergenceswas shown to be related to a careful choice of the
cutoff radius rc and the inclusion of long-range corrections in the LJ potential. The computed CP and CV values have
very good agreement as compared to availableNIST data. Furthermore, values of CV in a range of temperatures for
whichNIST data is not available could be computed. In the investigated range of temperatures, both CP and CVMD
results were fitted to a simple mathematical expression based on an empirical model that describes the critical
effects when the asymptotic models are not appropriate. The present approach is of general applicability and ro-
bust to compute thermophysical properties of fluids in the near-critical region.
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Keywords:
Argon
Heat capacities CP and CV
Near-critical
Molecular dynamics
1. Introduction

The investigation of critical phenomena in real fluids is not simple. It
is well known when tracking properties of fluids approaching the criti-
cal point that an anomalous behavior can be observed. Depending on
the investigated property, this is generally characterized by a strong di-
vergence to infinity or a fast collapse to zero [1,2]. Such an anomalous
behavior, which is due to the increasing spatial correlation of fluid mol-
ecules, appears in the form of large-scale density fluctuations close to
the criticality [3].

Experiments with near-critical fluids are complex to perform be-
cause they require high precision apparatuses and very specific experi-
mental methods to capture critical divergences [2,4]. Furthermore,
near-critical fluids take longer times to equilibrate [5] and are highly
sensitive to gravitational fields due to the strong compressibility [1,6]
and to the presence of even small amounts of impurities [7–10]. De-
pending on the extension of the investigation, there are severe experi-
mental limitations as explicitly displayed in the NIST database by the
limited range of available values of fluid properties near to the critical
point [11].

On the theoretical side, a considerable effort has been made to de-
scribe critical phenomena. Mean field approaches, the workhorse of
te Program,Military Institute of
classical statistical mechanics, are not suitable to describe critical diver-
gences because long range correlations are not included by construction
[5]. The use of power laws based on the concept of universal scaling was
an important step to overcome that difficult [12]. Undoubtedly, themost
significant contribution to this field is the development of the
renormalization group (RG) theory that established a new general
framework to elucidate the critical behavior [13]. From this theoretical
framework, it was possible to identify classes of systems that behave
similarly near to the critical point. Therefore, even systems with
completely different physical nature but belonging to the same univer-
sality class have their critical divergences described by the same univer-
sal exponents depending only on the property under consideration. For
instance, simple fluids near the critical point belong to the same class
of 3D Ising-like systems due to the short-range forces and the presence
of only one order parameter [14].

In spite of the great success of RG theory to describe the anomalous
behavior of fluid properties near the critical point, only in the asymptotic
limit close to the critical point this theory leads to quantitative agree-
ment between theory and experiment. In order to experimentally cap-
ture asymptotic divergences, it is necessary, for instance, to measure
temperatures of the order of 10−3 K or less, which is not simple. More-
over, away from the critical point asymptotic power laws are not ade-
quate to model fluid properties [15]. In this case, it would be necessary
to extend the RG predictions to a larger range of thermodynamic states
beyond the vicinity of the critical point in the phase diagram [16–18].
Possible approaches include crossover models, which focus on the
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development of theoretical models capable of describing continuously
fluids from 3D Ising to mean-field-like behaviors [19–21]. Molecular
simulations can be especially helpful to compute values of physical prop-
erties in the near-critical region. Molecular dynamics (MD) and Monte
Carlo methods are well-established molecular simulation techniques
that can be used to investigate critical phenomena. Recently, we
employed MD to compute accurate values of isothermal compressibility
and thermal expansion coefficient [22] as well as transport properties
[23] of argon near the critical point.

In this work, two thermodynamic properties with great practical in-
terest are investigated: the heat capacities at constant volume, CV, and at
constant pressure, CP. Their importance stems from application to engi-
neering problems related to the analysis of energy balance in industrial
processes, heat transfer and fluid dynamics. The former property is ac-
tually the most difficult one we have calculated so far [22,23], which is
an important fact that delayed and motivated the present work. This
is the major reason why the definition of a calculation protocol is
deemed useful and presented here. It starts by noting that CV and CP
are basic thermodynamic properties defined as temperature (T) deriva-
tives of the internal energy (E) and the enthalpy (H), respectively, along
specific paths in the phase diagram: [24]

CV ¼ ∂E
∂T

� �
V

ð1Þ

CP ¼ ∂H
∂T

� �
P

ð2Þ

Many recent works investigate the heat capacities of fluid systems
near the critical point [4,20,25–39]. Both theory and experiment indicate
that isochoric and isobaric heat capacities – CV and CP – of near-critical
fluids have an anomalous divergent behavior in this thermodynamic re-
gion [40–42]. The asymptotic divergent behavior of CV along the critical
isochoric can be described as a power law of the temperature T in the
form

CV ¼ CVo ΔTrð Þ–α ð3Þ

where ΔTr = T/Tc−1, Tc is the critical temperature, CVo is a cofactor that
depends on the substance and α is a universal exponent [19]. In contrast,
the critical divergence of CP can be deduced employing the generalized
Mayer's relation [24] given by

CP−CV ¼ TM
ρ2

∂ρ
∂T

� �2

P

∂P
∂ρ

� �
T

ð4Þ

for which P is the pressure, ρ is the density and M is the molar mass
and which can be used to show that the asymptotic behavior of CP

and of the isothermal compressibility KT = (1/ρ)(∂ρ/∂P)T is similar,
[1] i.e.

CP ≈ CPo ΔTrð Þ–γ ð5Þ

since KT= KTo(ΔTr)–γ. The α and γ exponents of Eqs. (3) and (5) were
accurately determined from experiments and RG calculations, yield-
ing α = 0.110 ± 0.003 and γ = 1.239 ± 0.002 [43].

The correlation length ξ, which measures the spatial extension of
correlated structural fluctuations, also diverges asymptotically as a
function of temperature according to a power law given by [3,14]

ξ ¼ ξo ΔTrð Þ–ν ð6Þ

in such a way that it becomes much larger than any microscopic length
of the system. In this regime it is reasonable to assume ξ as the only rel-
evant length of the fluid [33]. In Eq. (6), ν=0.630±0.001 is a universal
critical exponent [43] and the cofactor ξo for argon is 1.4 Å [44]. There-
fore, in the vicinity of the critical point, the role of long-range
interactions increases and fluid properties cannot be sufficiently de-
scribed by a local microscopic behavior – it is then essential to take
into account the collective motion of the fluid particles.

The computation of CV near the critical point is especially more chal-
lenging compared to CP because changes in internal energy (E) for a
given change in temperature are much smaller than the respective en-
thalpy (H) changes. In other words, CV diverges weakly while CP di-
verges strongly [14]. Moreover, in the neighborhood of the critical
point, the calculation of CV with Eq. (1) can be difficult due to the mag-
nitude of the microscopic fluctuations of E.

A fluid composed by argon atoms has great importance for theoret-
ical and practical reasons. Argon is the most abundant noble gas in
Earth's atmosphere and is chemically inert for practical purposes,
whichmakes it very useful to calibrate experimental devices, for exam-
ple. As a noble gas, argon atoms are nonpolar, nonbonded and their in-
teractions are well described by the classical Lennard-Jones (LJ)
interaction potential. This potential is the simplest model that incorpo-
rates both the overlap of the electronic molecular clouds (responsible
for the repulsion between atoms) and the van der Waals interaction
that accounts for the weak attraction between particles. Not surprising-
ly, due to its simplicity the LJ potential is frequently used in molecular
simulations. Furthermore, theoretical studies with argon are especially
important because they can be a starting point for further investigations
related to other spherically symmetric species. One can also find a large
body of high quality experimental data related to argon properties [11] –
including CV and CP values [41], whichmakes the comparisonwith com-
putational resultsmore interesting. It is not a coincidence that argon has
been extensively used in molecular dynamics simulations since the first
studies [45].

In this workwe useMD as a robust general approach to compute ac-
curate results of CP and CV of argon in the neighborhood of the critical
point. The computed results compare very favorably with available
NIST data [11]. In addition to present accurate results for these proper-
ties under conditions experimentally difficult to attain, we computed CV
values in a thermodynamic region where NIST data is limited and theo-
retical values are poor. Finally, we discuss how numerical parameters in
MD simulations affect the accuracy of the results for near-critical fluids.
2. Computational details

Molecular dynamics techniques compute phase space trajectories –
positions ri and velocities vi – of a system of particles through numerical
simulations driven by Newton's equations of motion [46–48]. From the
phase space, thermodynamic properties can be computed based on en-
semble averages as deduced in statistical mechanics. A general view of
the procedures for employing molecular dynamics to study near-
critical fluids is presented in details in Ref. [49].

The accuracy of MD results strongly depends on the adequate selec-
tion of numerical parameters. We used 104 argon atoms to achieve a
precise control of the thermodynamic state within the cubic simulation
box. Periodic boundary conditions were employed to avoid edge effects
on the bulk fluid. The time step was 1 fs. Each state was equilibrated
during 2 ns and additional 2 ns were used to compute the averages. En-
ergies and enthalpies were computed at twenty unequally spaced
values of ΔTr between 0.00 and 1.00 clustered near the critical point.
The values of ΔTr are listed in the supplementary material. CV and CP
were computed using Eqs. (1) and (2) at themidpoint of eachΔTr inter-
val resulting in nineteen values.

Simulationswere performedwith LAMMPS package [50]. For the in-
teratomic potential, we used the truncated version of the Lennard-Jones
interaction, written as

U rij
� � ¼ 4ε σ=rij

� �12− σ=rij
� �6h i

þ UTC rij≤rc
� �

0 rijNrc
� �

(
ð7Þ



Fig. 1. Comparison between the box size and the corresponding correlation length ξ for CV
calculations at ρ = ρc estimated from Eq. (6) for each considered ΔTr value.

Fig. 2. Heat capacity at constant volume CV obtained from MD simulations of 104

argon atoms as a function of temperature at ρ = ρc using the Lennard-Jones
potential with rc = 7.5σ and long range tail corrections. Full line: NIST values. Blue
line: ideal gas value. Dashed line: fitted function to MD results according to Eq. (9).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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where UTC is the so-called tail correction given by [48,51]

UTC ¼ 2πn
Z
rc

∞
r2ijg rij

� �
U rij
� �

drij ð8Þ

where n is the number density N/V, g(rij) is the pair distribution func-
tion, ε is the energy well depth, σ is the effective atom size, rij is the dis-
tance between particles i and j, and rc is the cutoff radius. The 12-
exponent term describes the repulsion at short distances whereas the
6-exponent term stands for the attraction at larger separations [52,
53]. Here we used ε/kB=119.8 K and σ=3.405 Å [54]. The critical con-
stants of the same Lennard-Jones system were computed previously
[55–57] resulting in Tc = 157.178 K, Pc = 52.8862 atm, and ρc =
530.892 kg/m3. The NIST tables, however, report Tc-NIST = 150.687 K,
Pc-NIST= 47.9441 atm and ρc-NIST= 535.599 kg/m3 [11]. This discrepan-
cy was overcome by using reduced variables which provides a suitable
way to compare NIST heat capacities with the corresponding present
MD results. The used ε and σ values were also employed in the compu-
tation of more complex properties such as the bulk viscosity [23,58].

The calculation of CV performed within the NVT ensemble employed
two density values: ρ = ρc and ρ = 1.2ρc. For CP, the NPT ensemble
was used along with two pressure values, P = Pc and P = 1.2Pc. The
choice of 20% larger values of ρc and Pc are based on previous works
[22,23]; however, other density and pressure values can be used. NPT
and NVT ensembles were achieved by means of Nosé-Hoover barostat
and thermostat [59].

Smaller cutoff radii in Eq. (7) are useful to reduce the computational
cost of simulations by avoiding calculations over distant particles which
would yield negligible interaction energies. Typical choices for rc lie
around 2.5σ, value indicated on classical textbooks,which neglectUij in-
teraction values between one and 2% of ε [46]. However, considerably
larger values for rc are required to properly deal with near-critical fluids
with correspondingly increase of computational cost [20,31,32,60]. For
example, values for rc up to 15σ have been used in studies that demand
high quality radial distribution functions [61]. The sensitivity of our cal-
culations with respect to this parameter was investigated for rc =2.5σ,
5.0σ, 7.5σ and 10.0σ. Such a large range of values for rc was chosen
based on the fact that some properties of near-critical fluids are espe-
cially affected by cutoff values below 5.0σ [60,62,63], in special the crit-
ical point value.

It is also important to note that MD simulations with periodic
boundary conditions must obey the minimal image convention, which
establishes that the length of the simulation box (Lbox) must be greater
than 2rc to avoid multiple evaluations of the interaction energy of the
samepair of atoms.Moreover, the accurate description of the critical be-
havior requires at each temperature a simulation box larger than the
correlation length. The number of particles in this work was chosen in
order to keep the length of simulation box Lbox larger than both 2rc
and the correlation length ξ, as shown in Fig. 1. The correlation length
was estimated from Eq. (6). It can be seen that the only value of ΔTr
which leads to a Lbox b ξ is ΔTr = 0.

3. Results and discussion

Results for CV as a function of ΔTr at ρ = ρc are presented in Fig. 2.
This figure shows the results for rc = 7.5σ, value that lead to the best
compromise between agreement with NIST data and computational
cost. At ρ= ρc, the rc=2.5σ value poorly described the near-critical di-
vergences. Improved results were obtained for rc = 5.0σ, but consider-
ably dispersion was still observed in the results. On the other hand, the
use of rc = 10.0σ increased the computational time with negligible im-
provement of accuracy as compared to 7.5σ. Considering that tail cor-
rections only change the total energy E by a constant value, CV is not
affected because it is computed from a derivative. Our data for CV
using rc =2.5σ, 5.0σ, and 10.0σ are presented in Fig. S1 of Supplemen-
tary material.

From the computed results, we propose an empirical model based
on Refs. [20,64] that suitably fits the simulations results in the studied
range of temperatures thereby capturing the critical effects when the
asymptotic model is not appropriate. This model is described by the ex-
pression.

CV ¼ a ΔTrð Þ–b þ CV i:g:ð Þ ð9Þ

where a and b are non-universal parameters, and CV(i.g.) = 3R/2 =
2.981 cal/mol is the heat capacity of an ideal gas, with R being the
ideal gas constant. The model of Eq. (9) is plotted in Fig. 2 as a dashed
line with parameters a and b obtained in the fitting given in Table 1.
Note that in this model the limiting behavior for gases at high tempera-
tures must approach the ideal gas value. Fig. 2 shows the good agree-
ment between MD results and NIST data as well as the robustness of



Table 1
Fitting parameters for CV and CP using respectively Eqs. (9) and (10) fromMD results and
NIST data.

Parameters MD NIST

CV at
ρ = ρc

a (cal/mol) 0.3323 0.3898
b 0.5551 0.6136

CP at
P = Pc

c (cal/mol) 1.0608 0.99971
d 0.80102 0.83876

Fig. 4. Heat capacity at constant pressure CP obtained from MD simulations of 104

argon atoms as a function of temperature at P = Pc using the Lennard-Jones potential
with rc = 7.5σ and long range tail corrections. Full line: NIST values. Red line: ideal gas
value. Dashed line: fitted function to MD results according to Eq. (10). (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Eq. (9) to fit our MD results for a wide range of temperatures, including
points very close to the critical temperature, i.e., ΔTr =0.05. The plot of
the fitting curve reveals that the fitting has an average error of 8% as
compared to NIST data especially in the interval 0.04 ≤ ΔTr ≤ 0.50.

To assure the accuracy of the previous results, Fig. 3 demonstrates
how the average pressures computedwithNVT simulations can suitable
describes the corresponding experimental values. The overall average
error along the curve is b4%. BelowΔTr=0.30 the error for the comput-
ed pressure is b2%.

Fig. 4 presents values for CP at P= Pc for rc =7.5σ. As expected, CP is
affected by the rc values and the inclusion or not of long-range correc-
tions. For example, the choice rc = 2.5σ is enough to lead to a
good agreement with NIST data but only by including the long-range
corrections. On the other hand, simulations without long-range correc-
tions give good results solely for rc ≥ 7.5σ. Results are not improved for
rc = 10.0σ if compared to the ones obtained with 7.5σ. Additional re-
sults of CP for rc = 2.5σ, 5.0σ and 10.0σ with long range corrections
are presented in the Fig. S2 of the Supplementary material.

In the same way as done for CV, Fig. 5 presents how the average re-
duced densities ρr computedwithNPT simulations can suitably describe
the corresponding experimental values. Only atΔTr=0.00 theMDden-
sity values were overestimated by 25%. For the other ΔTr values, the av-
erage error is 5%.

Similarly to the CV results, we fitted the CPMDvalues to an empirical
power law given by

CP ¼ c ΔTrð Þ–d þ CP i:g:ð Þ ð10Þ

where c and d are non-universal parameters (given in Table 1), and
CP(i.g.) is the heat capacity at constant pressure of an ideal gas equals
5R/2 = 4.968 cal/mol; R is the ideal gas constant. The fitted function,
Eq. (10), is plotted as a dashed line in the Fig. 4. The convergence of CP
Fig. 3.Average reduced pressure as a function of temperature at ρ= ρc obtainedwithNVT
MD simulations to compute CV of 104 argon atoms using the Lennard-Jones potential with
rc = 7.5σ and long range tail corrections. Results are compared with NIST data.
value to the ideal behavior along the critical isobar is patent. The fitted
function reveals that it has a great agreement with NIST data especially
for ΔTr ≤ 0.30.

We also usedMD to compute CV at ρ=1.2ρc and CP at P=1.2Pc to
illustrate the applicability of the technique in thermodynamic paths
distinct from those that exhibit the asymptotic behavior. It is expect-
ed that in these curves one can observe amaximum value of the ther-
modynamic property as a consequence of the proximity of the
critical diverging path [30,65,66]. The MD results are shown in Fig.
6. By employing rc = 7.5σ, the CP values are in very good agreement
with NIST data along all the curve. In contrast, CV values fits well the
NIST data for ΔTr ≥ 0.20. The maximum value for CP was found at ΔTr
= 0.05 at P = 1.2Pc, whereas the maximum CV at ρ = 1.2ρc was not
clearly distinguished. Results using other values for rc are shown in
Figs. S3 and S4 of the Supplementary material.
Fig. 5. Average reduced density as a function of ΔTr at P = Pc obtained with NPT
MD simulations to compute CP of 104 argon atoms using the Lennard-Jones potential
with rc = 7.5σ and long range tail corrections. Results are compared with NIST data.



Fig. 6. Comparison between heat capacities obtained fromNIST data and fromMD simulations of 104 argon atoms as functions of temperature using the Lennard-Jones potential with rc=
7.5σ and long range tail corrections: (a) CP at P = 1.2Pc (b) CV at ρ = 1.2 ρc.
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4. Conclusion

MD simulations were employed to compute heat capacities CV and CP
of argon in the near-critical region. Good agreement of our results as
compared with the NIST data was obtained in the whole range of re-
duced temperatureΔTr. A careful use of theMD approachwas indispens-
able to accurately describe the non-asymptotic critical divergences of CV
and CP. In particular, the judicious choice of the cutoff radius combined
with the use of long range tail corrections for the Lennard-Jones poten-
tial, and consequently the choice of the size of the simulation box,
were shown to be crucial for the accuracy of the results.

We proposed an empirical model in the form of a power law that
fairly describes the thermodynamic region where the critical effects
are still observable but do not correspond to the asymptotic behavior.
The critical effects on CV and CP continuously towards the ideal gas be-
havior could be described. For both properties, the computed exponents
are different from those universal critical exponents.

Larger values of rcwere necessary to correctly describe critical diver-
gences of CV in comparison to NIST data.Whereas accurate results for CP
could be obtained with rc = 2.5σ and long range corrections, a value of
7.5σ was required for CV. This is due to the lower amplitude of the
anomalous behavior of CV, which as compared to CP, makes the former
considerably more difficult to compute. The 10.0σ value did not im-
prove the accuracy of results when compared to 7.5σ and considerably
increased the computational time. We recommend the use of rc =7.5σ
for argon as the optimumvalue to be employed inMD simulations using
a Lennard-Jones interaction potential to compute thermodynamics
properties in the near-critical region.

We showed that the MD approach to compute near-critical proper-
ties is of general applicability. Investigations of other systems in the
near-critical region using the same approach are underway. Further-
more, the presented procedure can be extended to smaller values of
ΔTr. For this purpose, it would be necessary to increase the size of the
simulation box in order to refine the control of the temperature and to
guarantee that the system size is larger than the correlation length. Nat-
urally, there is a practical computational limit to this procedure. The
universal critical exponents of the asymptotic power laws would be dif-
ficult to obtain with similar simulations since a temperature resolution
below 10−5 is needed. In spite of that, the temperature resolution
employed here was shown suitable to accurately describe the interme-
diate thermodynamic region between the asymptotic behavior and the
mean field approach.
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Appendix A. Supplementary data

Additional results of computed heat capacities CV and CP of argon are
presented. Supplementary data associatedwith this article can be found
in the online version, at 10.1016/j.molliq.2017.03.120.
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