UNIVERSIDADE FEDERAL DE OURO PRETO - UFOP DEPARTAMENTO DE MATEMÁTICA - ICEB LISTA DE CÁLCULO III e C

- 1) Calcule a área da superfície do cilindro $x^2 + y^2 = 2x$ limitada pelo plano z = 0 e o cone $z = \sqrt{x^2 + y^2}$.
 - 2) Calcule a integral de superfície $\int \int_S (x^2+y^2)ds$, onde S é a esfera $x^2+y^2+z^2=a^2$.
- 3) Calcule $\int \int_S (F \cdot n) ds$, onde F(x, y, z) = (x, y, -2z) e S é a esfera $x^2 + y^2 + z^2 = 4$, com o vetor normal n exterior.
- 4) Calcule $\int \int_S (F \cdot n) ds$, onde F(x, y, z) = (x, y, 2z) e S é a união dos planos y z = 0 e y + z = 0; com x e z variando entre 0 e 1.
- 5) Use o Teorema de Stokes para mostrar que $\oint_C ydx + zdy + xdz = -2\pi\sqrt{2}$, onde C é a curva obtida como interseção do plano x+y=2 com a esfera $x^2+y^2+z^2=2(x+y)$.
- 6) Calcule $\int \int_S (F \cdot n) ds$, onde $F(x, y, z) = (xy^2, x^2y, y)$ e S é a superfície do sólido limitado pelo cilindro $x^2 + y^2 = 1$ e pelos planos z = 1 e z = -1, com a normal a S apontando para fora do sólido. (Sugestão: use o Teorema de Gauss)