

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUCAÇÃO PLANO DE ENSINO

Nome do Componente Curricular em português:		Código: CAT166
Teoria de Controle III		
Nome do Componente Curricular em inglês:		
Control Theory III		
Nome e sigla do departamento:		Unidade acadêmica:
Departamento de Engenharia de Controle e Automação		Escola de Minas
(DECAT)		
Nome do docente: José Alberto Naves Cocota Júnior e Agnaldo José da Rocha Reis		
Carga horária semestral	Carga horária semanal teórica	Carga horária semanal prática
60 horas	4 horas/aula	0 horas/aula
Data de aprovação na assembleia departamental:		

Ementa: Controle multivariável e não linear.

Conteúdo programático:

- 1. Análise de Sistemas de Controle no Espaço de Estados
 - a) Introdução;
 - b) Matriz de Transferência;
 - c) Formas Canônicas;
 - d) Estabilidade de Lyapunov;
 - e) Controlabilidade;
 - f) Observabilidade.
- 2. Projetos de Sistemas de Controle pelos Métodos de Espaço de Estados
 - a) Introdução;
 - b) Projeto por meio de Alocação de Polos;
 - c) Projeto de Observadores de Estado;
 - d) Projeto de Servosistemas.
- 3. Análise de Resposta em Frequência
 - a) Introdução;
 - b) Diagrama de Bode;
 - c) Diagrama de Nyquist;
 - d) Critério de Estabilidade de Nyquist;
 - e) Margem de ganho e margem de fase por meio de diagrama de Nyquist;
 - f) Estabilidade, Margem de Ganho e Margem de Fase por meio de diagrama de Bode.
- 4. Projeto de Sistemas de Controle pela Resposta em Frequência
 - a) Introdução;
 - b) Compensação por avanço de fase;
 - c) Compensação por atraso de fase;
 - d) Compensação por atraso e avanço de fase.
- 5. Análise de Sistemas de Controle Multivariável

- a) Introdução;
- b) Modelos para sistemas multivariáveis:
 - Espaço de Estado;
 - Matriz de Transferência;
 - Descrições Matriciais Fracionárias;
 - Polos e Zeros de sistemas multivariáveis;
- c) Sistemas multivariáveis em malha fechada
- d) Estabilidade:
 - Por meio de Descrições Matriciais Fracionárias;
 - Resposta em frequência.
- e) Resposta em estado estacionário para entrada em degrau;
- f) Análise no domínio da frequência:
 - Ganhos principais e direções principais;
 - Rastreamento;
 - Compensação de Distúrbios;
 - Rejeição de ruído de medição;
 - Análise de sensibilidade;
 - Cancelamento de polos e zeros.
- g) Robustez.
- 6. Técnicas monovariáveis em sistemas multivariáveis
 - a) Introdução;
 - b) Controle Descentralizado;
 - c) Emparelhamento de entradas-saídas;
 - d) Robustez;
 - e) Ação feedforward no controle descentralizado;
 - f) Convertendo problemas multivariáveis em monovariáveis.
- 7. Projeto de Sistemas de Controle Multivariáveis
 - a) Introdução;
 - b) Realimentação de estados estimados;
 - c) Regulador Linear Quadrático (LQR);
 - d) Filtros ótimos lineares.
- 8. Análise de Sistemas de Controle Não-Lineares por Função Descritiva
 - a) Introdução a Sistemas Não-Lineares;
 - b) Sistemas de Controle Não-Lineares;
 - c) Funções Descritivas;
 - d) Análise de Sistemas de Controle Não-Lineares;

Objetivos: Introduzir ao aluno conceitos de sistema multivariáveis assim como apresentar metodologias mais usadas para análise e controle destes sistemas. Permitir ao aluno familiarizar-se com o projeto de controladores utilizando variáveis de estado. Apresentar princípios de metodologias ótimas para projetos de controladores e observadores. Introduzir conceitos para análise de sistemas multivariáveis para projeto de controladores, além de apresentar técnicas para linearização de tais sistemas.

Metodologia: Aulas expositivas, exercícios e trabalhos (aprendizagem baseada em projetos).

Atividades avaliativas:

Serão realizadas duas provas (B1 e B2). Além disso, os alunos deverão realizar e apresentar o

trabalho prático multidisciplinar (T1). Alunos que obtiverem média $M \ge 6.0$ serão aprovados, sendo Média Final = [B1+B2+2.(T1+T2+T3)]/4, sendo 50% prova e 50% trabalho. As atividades de cada grupo de trabalho serão discutidas e definidas nas duas primeiras semanas de aula. Serão avaliados o trabalho redigido, a apresentação e os resultados experimentais.

Cronograma:

Conteúdo Programático (1) e (2) de 14/03 a 12/04; (3) e (4) de 26/04 a 31/05; (5) a (8) de 07/06 a 05/07.

Primeira avaliação teórica (B1): 25/04;

Segunda avaliação teórica (B2): 28/06;

- 1ª Etapa Trabalho Prático do Sistema de Dois Tanques Acoplados (T1): 17/05;
- 2ª Etapa Trabalho Prático do Sistema de Dois Tanques Acoplados (T2): 14/06;
- 3ª Etapa Trabalho Prático do Sistema de Quatro Tanques Acoplados (T3): 11/07; Substitutiva ou exame final: 19/07.

Bibliografia básica

- [1] OGATA, K. Engenharia de controle moderno. 2. ed.
- [2] DORF, R. C.; BISHOP, R. H. Sistemas de controle modernos. 8.ed. /11.ed. Rio de Janeiro: LTC, 2001/2009.
- [3] GOODWIN, G. C., GRAEBE, S. F., SALGADO, M. E. Control System Design. Prentice Hall Bibliografia complementar:
- [1] S. SKOGESTAD, I. POSTLEWAITE Multivariable Feedback Control: Analysis and Design John Wiley and Sons Ltd.
- [2] T. GLAD, L. LJUNG Control theory multivariable e nonlinear methods Taylor and Francis.
- [3] J.-J. SLOTINE, W. LI Applied Nonlinear Control Prentice Hall
- [4] P. CASTRUCCI, R. CURTI Sistemas não Lineares Editora Edgard Blücher LTDA
- [5] H. K KHALIL NonLinear Systems Prentice Hall.