

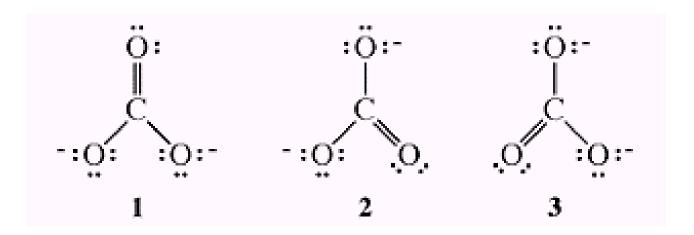
Universidade Federal de Ouro Preto

Ressonância, Formas de respresentação de moléculas orgânicas, Forças intermoleculares

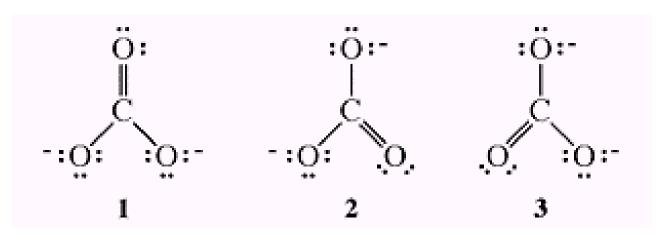
Aula 3

Flaviane Francisco Hilário

1 - Ressonância


ESTRUTURA DE LEWIS

Explica de maneira satisfatória a conectividade dos átomos


Impõe aos elétrons uma localização

Íon carbonato $(CO_3^{2-}) \rightarrow 3$ estruturas de Lewis equivalentes.

Interconversão pela simples TRANSFERÊNCIA DE ELÉTRONS.

Íon carbonato (CO_3^{2-})

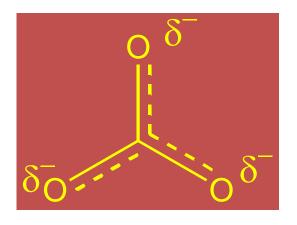
Dados conhecidos

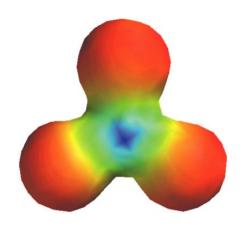
Dados de raios X

Todas as ligações no íon carbonato têm o mesmo comprimento.

Dados teóricos

As densidades de carga são iguais nos átomos de oxigênio.


Teoria da ressonância


Sempre que uma molécula ou um íon puderem ser representados por duas ou mais estruturas de Lewis, cuja única diferença é a posição dos elétrons, teremos:

1 — Nenhuma dessas estruturas, que são chamadas de estruturas de ressonância ou contribuintes de ressonância, será a representação correta para a molécula ou íon.

2 – A molécula ou íon será melhor representado por um *híbrido* de ressonância.

O que podemos falar do hídrido de ressonância?

Híbrido de ressonância do íon carbonato

Ligação simples C-O: 1,43 Å

Ligação dupla C=O: 1,20 Å

Ligação medida: 1,28 Å

- 1 O comprimento das ligações C---- O são iguais e são intermediárias entre uma dupla e uma simples.
- 2 As densidades de carga são iguais em cada oxigênio.

Regras de Ressonância

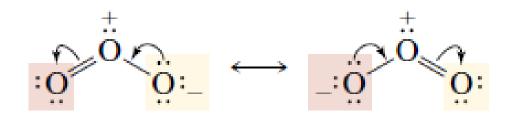
1 - Estruturas de ressonância só existem no papel.

- Escrevemos as estruturas de ressonância e "conectamos" por uma seta dupla ↔.
- A molécula real será um híbrido de todas elas.

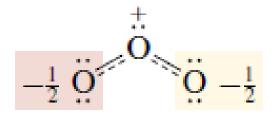
- 2 Ao escrever estruturas de ressonância, podemos mover apenas os elétrons.
 - A posição dos núcleos dos átomos deve continuar a mesma em todas as estruturas.

$$CH_3$$
— CH
 CH_2
 CH_3 — CH
 CH_2
 CH_3
 CH
 CH_2
 CH_3
 CH
 CH
 CH
 CH
 CH

Estruturas de ressonância

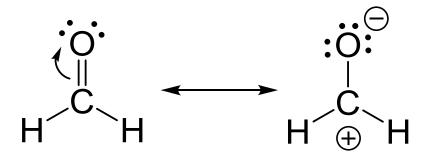

3 - Todas as estruturas de ressonância devem ser estruturas de Lewis apropriadas.

 Por exemplo: NÃO devemos escrever estruturas nas quais o carbono possua cinco ligações.


INCORRETO! O carbono NÃO pode fazer cinco ligações!!!

4 - O híbrido de ressonância (molécula real) tem energia menor do que qualquer uma das estruturas de ressonância desenhadas.

Exemplo: ozônio (O3).



Estruturas de ressonância

Híbrido de ressonância

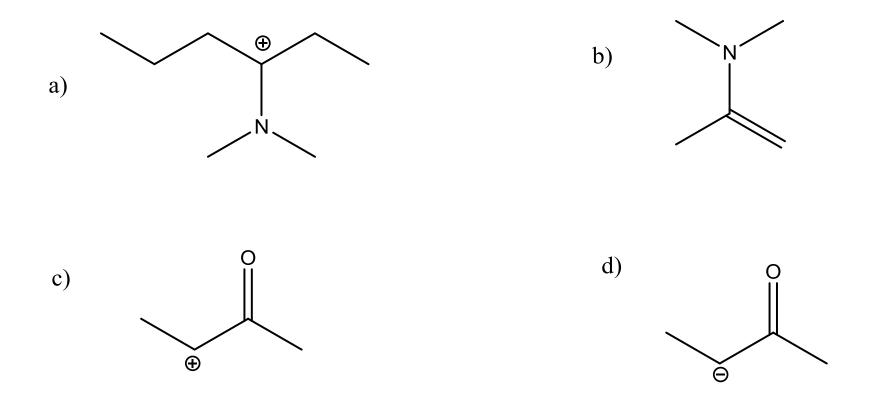
- 5 Quanto mais estável uma estrutura de ressonância (quando analisada isoladamente), maior é a contribuição para o híbrido.
- a. Quanto mais ligações covalentes uma estrutura tem, mais estável ela é.
- b. As estruturas nas quais todos os átomos têm um nível de valência completo são especialmente estáveis e contribuem muito para o híbrido.
- c. A separação de cargas diminui a estabilidade.

Estruturas de ressonância para o formaldeído

d. Os contribuintes de ressonância com carga negativa em átomos altamente eletronegativos são mais estáveis do que aqueles com carga negativa em átomos menos eletronegativos ou não-eletronegativos.

EXERCÍCIO: Qual dos dois íons é mais estabilizado por ressonância?

ion acetato


ion fenolato

Exemplo da importância da ressonância

Licopeno (presente no tomate)

EXERCÍCIO

Desenhe as estruturas canônicas de ressonância e o híbrido de ressonância para cada um dos compostos abaixo.

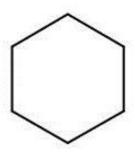
2 – Formas de representação de moléculas orgânicas

Fórmula química

 Maneira que os químicos possuem de representar a constituição das moléculas.

2.1 - Fórmula empírica

 Indica o tipo de átomos que formam uma molécula e a proporção em que se encontram.

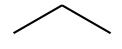

Ex.: CH_2 CH_3 $C_6H_{12}O_6$

2.2 - Fórmula molecular

• Indica o tipo e a quantidade de átomos que formam uma molécula. (Não indica a maneira pela qual os átomos estão ligados, nem a disposição desses no espaço.)

Ex.:
$$C_2H_4$$
 C_2H_6 CH_2O

Eteno
$$(C_2H_4)$$



Ciclohexano (C₆H₁₂)

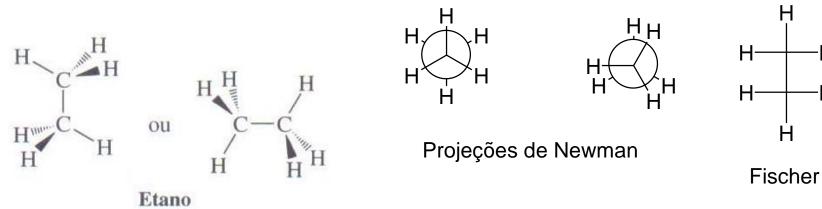
2.3 - Fórmula estrutural

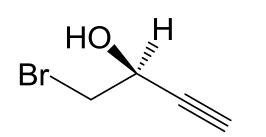
- Fornece a ordem de ligação (conectividade) dos átomos.
- Existem várias maneiras de representar as fórmulas estruturais de compostos orgânicos. Ex.: Para um composto com fórmula molecular C₃H₈

H₃CCH₂CH₃

Fórmula de traços

Fórmula condensada


Fórmula de linhas


 Considerando a fórmula molecular C₄H₁₀O, têm-se as seguintes possibilidades de fórmula estrutural:

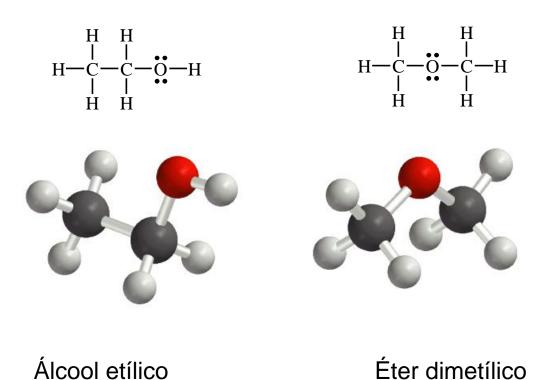
Compostos cíclicos (fórmula de traços e fórmula de linhas)

2.4 - Fórmulas tridimensionais

 Fornece informação sobre como os átomos de uma molécula estão arranjados no espaço.

Outras Fórmulas Tridimensionais para o Etano.

Cela ou Cavalete

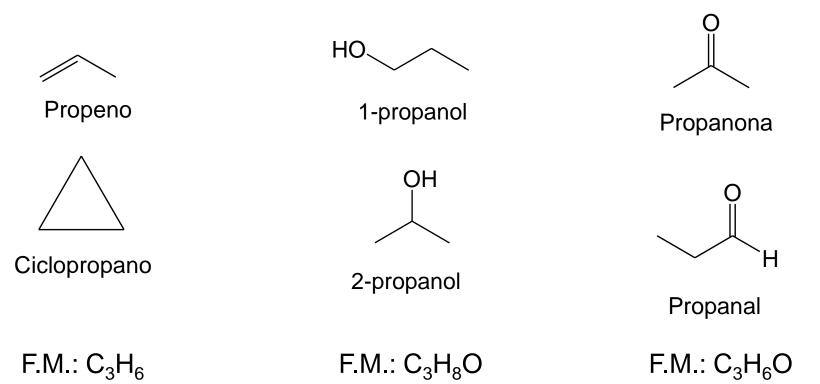

Isômeros: a importância das fórmulas estruturais

Isômeros: compostos diferentes que têm a mesma fórmula molecular.

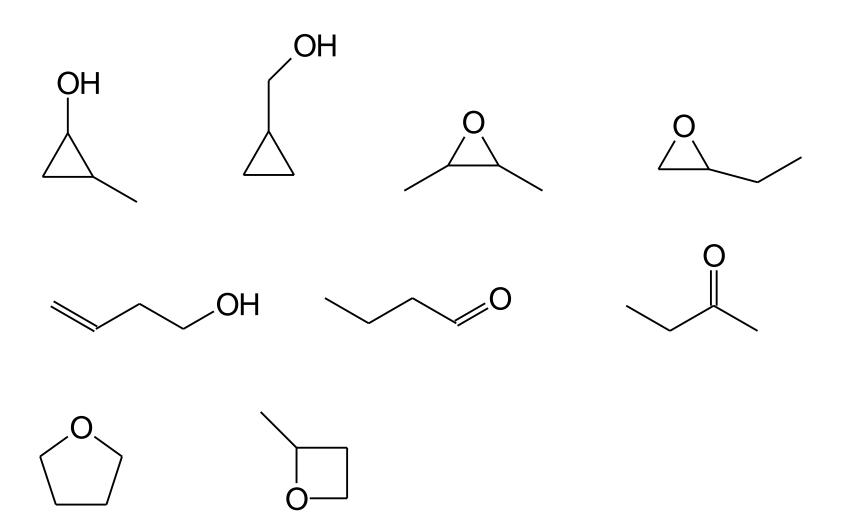
Exemplo: Dois compostos isoméricos com fórmula molecular C₂H₆O

		C ₂ H ₆ O	C ₂ H ₆ O
Temperatura ebulição em °C	de	78.5	-24.9
Temperatura fusão °C	de	-117.3	-138
Reação com Na ⁰		Libera H ₂	Não reage

Dois compostos diferentes na conectividade de seus átomos



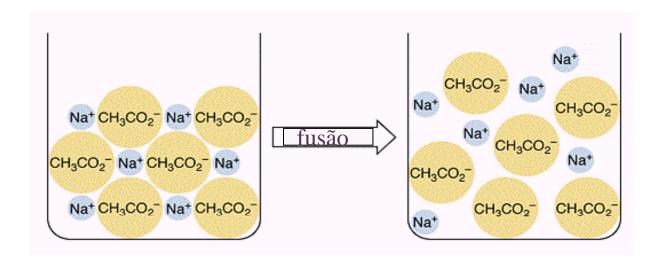
São isômeros constitucionais


Isômeros constitucionais

- Têm a mesma fórmula molecular, mas diferentes conectividades dos átomos (diferentes fórmulas estruturais).
- Tipos:

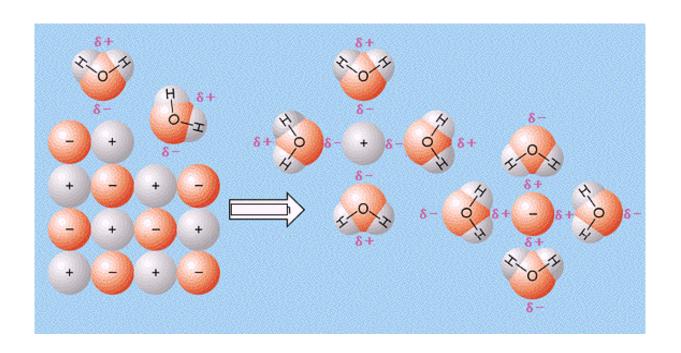
Isomeria de CADEIA Isomeria de POSIÇÃO Isomeria de FUNÇÃO

Para a fórmula molecular C₄H₈O, são possíveis as seguintes fórmulas estruturais:



3 – Forças intermoleculares

- ➤ Propriedades físicas (Temperatura de Fusão e de Ebulição) e Solubilidade ➡ dependem das <u>forças intermoleculares</u>! (As forças intermoleculares são mais fracas que uma ligação covalente.)
- > Tipos:
- Íon-íon
- Íon-dipolo
- Dipolo-dipolo
- Ligação de hidrogênio
- Van der Waals

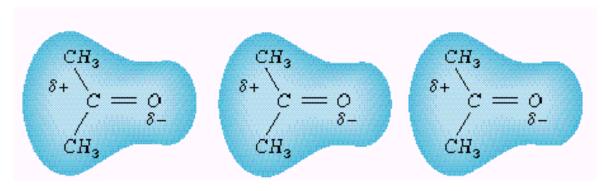

3.1 - Força ion-ion

- Mantém os íons unidos no estado cristalino.
- São forças eletrostáticas de rede fortes.
- É necessário grande energia térmica para separar os íons.

3.2 - Força íon-dipolo

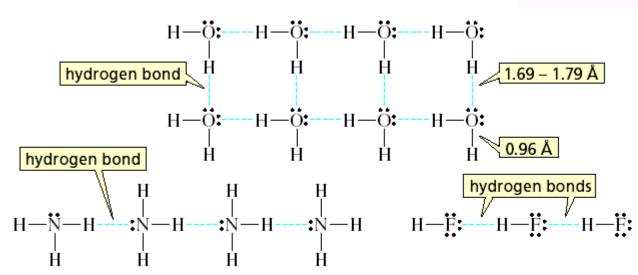
- Atração entre íons e moléculas polares.
- Presentes em solução contendo íon e solvente polar.
 Ex.: Solução aquosa de NaCl.

3.3 - Força dipolo-dipolo


Moléculas POLARES ($\mu \neq 0$)

Distribuição não-uniforme dos elétrons na molécula.

Orientação das extremidades atrativas

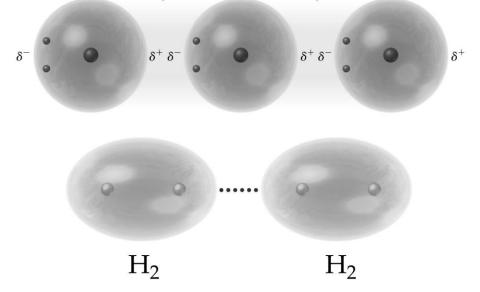

symbolized by

3.4 - Ligação de hidrogênio

- Tipo especial de dipolo-dipolo.
- Ocorre entre:
 - Átomos de hidrogênio ligados a átomos pequenos e fortemente eletronegativos (F, N e O) e pares de elétrons não ligantes.

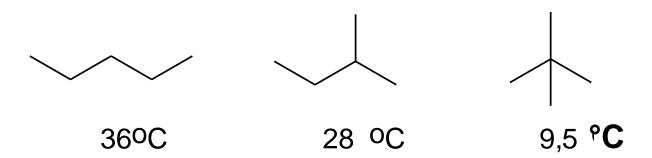
$$\begin{array}{c} \text{CH}_3\text{CH}_2 \\ \text{O} \\ \begin{array}{c} \delta^- \\ \text{H} \end{array} \\ \begin{array}{c} \delta^+ \\ \text{O} \\ \end{array} \\ \begin{array}{c} C\text{H}_2\text{CH}_3 \end{array}$$

- Dois tipos de ligação de hidrogênio:
 - Intramolecular (ocorre na mesma molécula);
 - Intermolecular (ocorre entre duas moléculas).
- Intramolecular com formação de anéis de 5 ou 6 membros.


3.5 - Forças de Van der Waals

Moléculas APOLARES (
$$\mu = 0$$
)

Movimento de elétrons

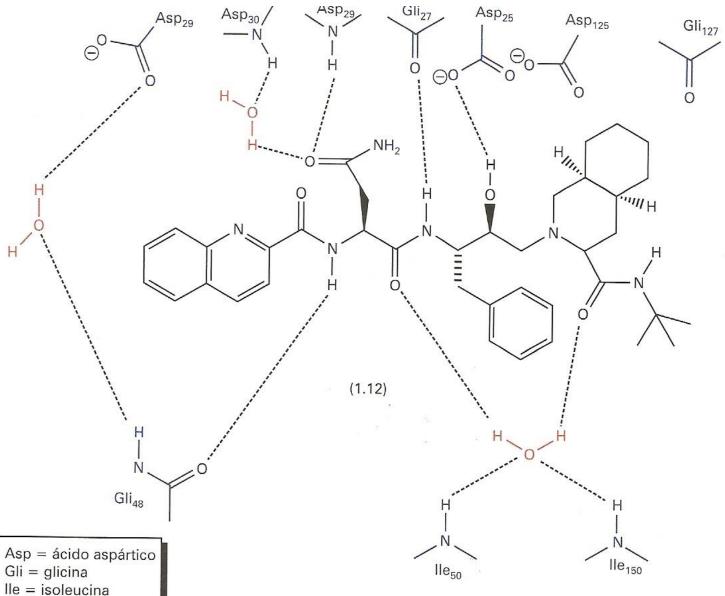

Dipolo TEMPORÁRIO

Dipolos INDUZIDOS (atrativos) nas moléculas vizinhas

Influência da superfície nas forças de Van der Waals

- A força de Van der Waals atua somente a distâncias muito pequenas. Ela será maior quanto maior for a área de contato entre as moléculas.
- Para alcanos de mesmo nº de átomos de carbono, a temperatura de ebulição diminui com o aumento da ramificação da cadeia. Ex.:

Importante: Quanto mais forte as forças intermoleculares (de atração), maior é a temperatura na qual um líquido entra em ebulição e maior é o ponto de fusão de um sólido.

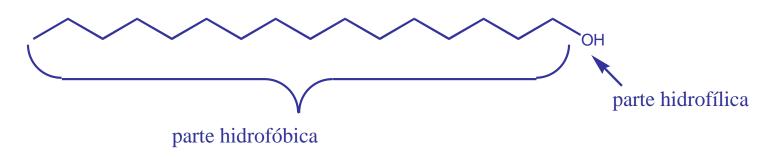

Exemplos da importância das forças de interações intermoleculares

flurbiprofeno

PGHS – prostaglandina endoperóxido sintase

Antiviral saquinavir interagindo com aminoácidos do sítio ativo da

protease do HIV.



3.6 - Solubilidade

 Depende da interação entre as moléculas do solvente e do soluto.

Solúvel em H₂O

Insolúvel em H₂O

EXERCÍCIO

O álcool butílico tem ponto de ebulição (118 °C) muito mais alto que seu isômero constitucional chamado éter dietílico (35 °C). Entretanto, ambos possuem a mesma solubilidade em água (63-69 g/L). Explique <u>detalhadamente</u> essas duas observações.

4 – Bibliografia

- SOLOMONS, G.; FRYHLE, C. **Química Orgânica**, vol. 1, 7 ed. Rio de Janeiro: LTC, 2001.
- BRUICE, P. **Química Orgânica**, vol.1, 4 ed. São Paulo, Pearson, 2006.