Funções Elementares

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função

$$f: \mathbb{C} \to \mathbb{C}: z = x + iy \mapsto f(z) = e^x \cos y + ie^x \sin y$$

Uma vez que

$$f|_{\mathbb{R}} = e^x$$
, $\forall x \in \mathbb{R}$.

E uma generalização para ser útil deve preservar as propriedades do que está sendo generalizado. Além disso, as duas propriedades que caracterizam a exponencial real são dadas por:

$$f'(x) = f(x), \forall x \in \mathbb{R}$$
, $f(x_1 + x_2) = f(x_1).f(x_2), \forall x_1, x_2 \in \mathbb{R}$

A primeira propriedade já foi verificada. Quanto a segunda, se assumirmos que

$$e^z = e^{x+iy} := e^x e^{iy}$$
, $\forall z \in \mathbb{C}$

Então, pela fórmula de Euler, teremos que

$$e^z = e^x(\cos y + i \sin y)$$
, $\forall z \in \mathbb{C}$

Definição: A função exponencial complexa é dada por

$$\exp: \mathbb{C} \to \mathbb{C}: z \mapsto \exp(z) = e^{x}(\cos y + i \sin y)$$

Com esta definição obtemos que $\exp(z)$ é analítica em todo $\mathbb C$ e satisfaz:

$$\begin{split} \exp(z_1 + z_2) &= e^{x_1 + x_2} [\cos(y_1 + y_2) + i \sin(y_1 + y_2)] \\ &= e^{x_1} e^{x_2} [\cos y_1 \cos y_2 - \sin y_1 \sin y_2 + i [\sin y_1 \cos y_2 + \sin y_2 \cos y_1]] \\ &= e^{x_1} e^{x_2} [(\cos y_1 + i \sin y_1) (\cos y_2 + i \sin y_2)] \\ &= e^{x_1} (\cos y_1 + i \sin y_1) . e^{x_2} (\cos y_2 + i \sin y_2) \\ &= \exp(z_1) \exp(z_2) \quad , \forall z_1, z_2 \in \mathbb{C}. \end{split}$$

Funções Trigonométricas: Pela fórmula de Euler, tem-se que

$$\begin{cases} e^{iy} = \cos y + i \operatorname{sen} y \\ e^{-iy} = \cos y - i \operatorname{sen} y \end{cases}, \forall y \in \mathbb{R}.$$

De modo que,
$$\begin{cases} \cos y = \frac{e^{iy} + e^{-iy}}{2} \\ \sin y = \frac{e^{iy} - e^{-iy}}{2i} \end{cases}, \forall y \in \mathbb{R}.$$

Propriedades: Denotando $\exp(z)$ por e^z tem-se

(P1)
$$|e^z| = e^x, \forall z = x + iy \in \mathbb{C}$$
.

(P2)
$$e^z \neq 0, \forall z \in \mathbb{C}$$
.

$$(\mathbf{P3}) \ \frac{1}{e^z} = e^{-z}, \forall z \in \mathbb{C}.$$

(P4)
$$\exp(z+2k\pi) = \exp(z), \forall z \in \mathbb{C}, \forall k \in \mathbb{Z}$$
.

(P5)
$$\exp(\overline{z}) = \overline{\exp(z)}, \forall z \in \mathbb{C}$$
.

Definição: As funções **complexas cosseno e seno** são definidas $\forall z \in \mathbb{C}$ como sendo

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\operatorname{sen} z = \frac{e^{iz} - e^{-iz}}{2i}$$

Além disso, quando os denominadores forem diferentes de zero, definem-se as seguintes funções trigonométricas complexas:

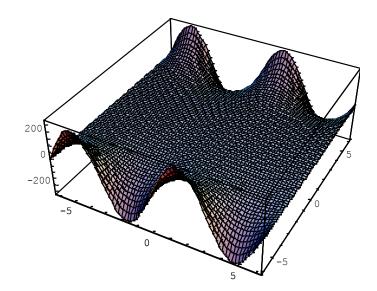
$$tg z = \frac{\operatorname{sen} z}{\cos z}$$

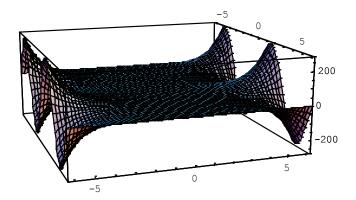
$$\cot z = \frac{\cos z}{\sin z}$$

$$\cos \sec z = \frac{1}{\sin z}$$

$$\sec z = \frac{1}{\cos z}$$

Gráficos: Re (senz)





Pergunta: Aonde se tem sen z = 0e cos z = 0? Da trigonometria real, sabemos que

sen x = 0, $\forall x = k\pi$, $\cos x = 0$, $\forall x = (2k+1)\frac{\pi}{2}$, $\forall k \in \mathbb{Z}$. Será que existem outros números complexos z tal que sen z = 0 e $\cos z = 0$? Vejamos, tem-se que

$$sen z = sen(x+iy) = \frac{e^{i(x+iy)} - e^{-i(x+iy)}}{2i} = \frac{e^{-y}e^{ix} - e^{y}e^{-ix}}{2i} = \frac{e^{-y}(\cos x + i \sin x) - e^{y}(\cos x - i \sin x)}{2i}$$

$$= \frac{(e^{-y} - e^{y})}{2i}\cos x + i\frac{(e^{-y} + e^{y})}{2i}\sin x = -i\frac{(e^{-y} - e^{y})}{2}\cos x + \frac{(e^{-y} + e^{y})}{2}\sin x$$
ou seja,

$$\operatorname{sen} z = \cosh y \operatorname{sen} x + i \operatorname{senh} y \cos x , \forall z \in \mathbb{C}$$

Analogamente, obtemos que

$$\cos z = \cosh y \cos x - i \operatorname{senh} y \operatorname{sen} x, \forall z \in \mathbb{C}$$

De modo que,

$$sen z = 0 \Leftrightarrow
\begin{cases}
\cosh y \operatorname{sen} x = 0 \Leftrightarrow \operatorname{sen} x = 0 \\
\operatorname{senh} y \cos x = 0 \Leftrightarrow
\begin{cases}
y = 0 \Leftrightarrow \begin{cases}
x = k\pi \\
y = 0
\end{cases}
\end{cases}$$

Analogamente,

$$\cos z = 0 \Leftrightarrow \begin{cases} \cosh y \cos x = 0 \Leftrightarrow \cos x = 0 \\ \operatorname{senh} y \operatorname{sen} x = 0 \Leftrightarrow \begin{cases} y = 0 \\ \operatorname{sen} x = 0 \end{cases} \Leftrightarrow \begin{cases} x = (2k+1)\frac{\pi}{2} \\ y = 0 \end{cases}$$

Propriedades:

(P1)
$$\sin^2 z + \cos^2 z = 1$$

(P2)
$$\operatorname{sen}(-z) = -\operatorname{sen} z$$
, $\cos(-z) = \cos z$

(P3)
$$sen(z_1 + z_2) = sen z_1 cos z_2 + sen z_2 cos z_1$$

(P4)
$$\cos(z_1 + z_2) = \cos z_1 \cos z_2 - \sin z_1 \sin z_2$$

OBS: Entretanto, uma propriedade será sacrificada

$$|\operatorname{sen} x| \le 1$$
, $|\cos x| \le 1, \forall x \in \mathbb{R}$.

De fato, tem-se que

$$\left| \operatorname{sen} z \right|^2 = \operatorname{sen}^2 x \cosh^2 y + \cos^2 \operatorname{senh}^2 y = \operatorname{sen}^2 x + \operatorname{senh}^2 y, \forall z \in \mathbb{C}$$

e

$$\left|\cos z\right|^2 = \cos^2 x + \sinh^2 y, \forall z \in \mathbb{C}$$
.

Exercício: Verifique se

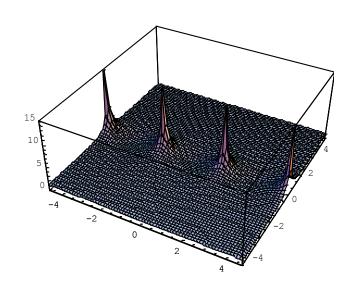
(i)
$$\operatorname{sen}, \cos : \mathbb{C} \to \mathbb{C}$$

(ii)
$$\operatorname{tg,sec}: \mathbb{C} - \{(2k+1)\pi/2 : k \in \mathbb{Z}\} \to \mathbb{C}$$

(iii)
$$\cot g, \csc : \mathbb{C} - \{k\pi : k \in \mathbb{Z}\} \to \mathbb{C}$$

São analíticas e calcule suas derivadas.

Gráficos: |tg z|



A partir da exponencial complexa somos levados as seguintes generalizações da trigonometria hiperbólica

Definição: $\forall z \in \mathbb{C}$,

$$senh z = \frac{e^z - e^{-z}}{2}$$

$$cosh z = \frac{e^z + e^{-z}}{2}$$

Além disso, aonde os denominadores não se anulam estão definidas as seguintes funções hiperbólicas complexas

$$tgh z = \frac{\operatorname{senh} z}{\cosh z} \qquad coth z = \frac{\cosh z}{\operatorname{senh} z} \qquad \operatorname{sech} z = \frac{1}{\cosh z} \qquad cos \operatorname{sech} z = \frac{1}{\operatorname{senh} z}$$

Pergunta: Aonde se tem senh z = 0 e $\cosh z = 0$? Da trigonometria hiperbólica real sabemos que $\sinh x = 0 \Leftrightarrow x = 0$ e $\cosh x \neq 0, \forall x \in \mathbb{R}$.

$$\operatorname{senh} z = \operatorname{senh}(x + iy) = \frac{e^{(x+iy)} - e^{-(x+iy)}}{2} = \frac{e^{x}(\cos y + i \sin y) - e^{-x}(\cos y - i \sin y)}{2}$$

$$= \frac{(e^{x} - e^{-x})}{2}\cos y + i\frac{(e^{x} + e^{-x})}{2}\sin y$$

$$= \operatorname{senh} x \cos y + i \cosh x \sin y$$

De modo que,

$$senh z = 0 \Leftrightarrow \begin{cases} senh x \cos y = 0 \Leftrightarrow \begin{cases} x = 0 \\ y = (2k+1)\frac{\pi}{2} \Leftrightarrow \begin{cases} x = 0 \\ y = k\pi \end{cases} \end{cases}$$

$$cosh x sen y = 0 \Leftrightarrow y = k\pi$$

Analogamente, obtém-se que

 $\cosh z = \cosh x \cos y + i \operatorname{senh} x \operatorname{sen} y$

De modo que,

$$\cosh z = 0 \Leftrightarrow \begin{cases} \cosh x \cos y = 0 \Leftrightarrow y = (2k+1)\frac{\pi}{2} \\ \operatorname{senh} x \operatorname{sen} y = 0 \Leftrightarrow \begin{cases} x = 0 \\ y = k\pi \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = (2k+1)\frac{\pi}{2} \end{cases}$$

Propriedades:

(P1)
$$senh(iy) = i sen y$$
 , $cosh(iy) = cos y$

$$(\mathbf{P2}) \left| \operatorname{senh} z \right|^2 = \operatorname{senh}^2 x + \operatorname{sen}^2 y$$

 $(\mathbf{P3}) \left| \cosh z \right|^2 = \operatorname{senh}^2 x + \cos^2 y$

(P4) $\operatorname{senh}(z_1 + z_2) = \operatorname{senh} z_1 \cosh z_2 + \cosh z_1 \operatorname{senh} z_2$

Exercício: Verifique se

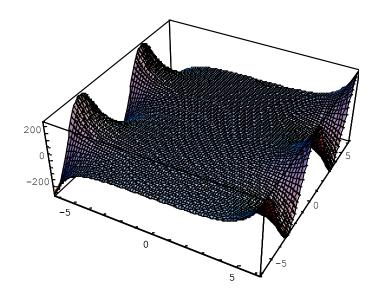
(i) senh, $\cosh : \mathbb{C} \to \mathbb{C}$

(ii) $\operatorname{tgh}, \operatorname{sech} : \mathbb{C} - \{i(2k+1)\pi/2 : k \in \mathbb{Z}\} \to \mathbb{C}$

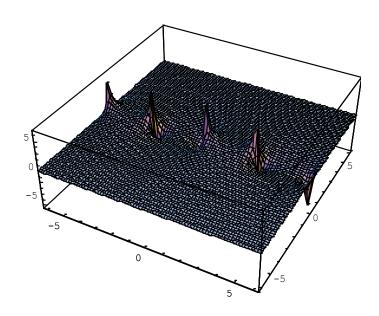
(iii) cotgh , $\operatorname{cos}\operatorname{sech}:\mathbb{C}-\{ik\pi:k\in\mathbb{Z}\}\to\mathbb{C}$

São analíticas e calcule suas derivadas.

Gráficos: |Senhz|



 $\cos \operatorname{sech} z$



Função Logarítmica:

Dado $w \in \mathbb{C}$ gostaríamos de resolver a equação

$$e^z = w \tag{1}$$

Ou seja, gostaríamos de encontrar os possíveis valores de $z=f^{-1}(w)$ onde $f(z)=e^z$. Lembrando que $e^z\neq 0, \forall z\in\mathbb{C}$, então a equação (1) não possuirá solução para w=0. Já para $w\neq 0$, temos que

$$w = |w| e^{i \arg w}$$

onde $\arg w = \theta_k = \theta_0 + 2k\pi$, onde $\theta_0 = \text{Arg } z$. Seja θ_k um valor particular de arg w, se tomarmos

$$z = \ln |w| + i\theta_k$$

Teremos que

$$e^{z} = e^{(\ln|w|+i\theta_{k})} = e^{\ln|w|}e^{i\theta_{k}} = |w|e^{i\theta_{k}} = w.$$

Então esse valor de z é uma solução da equação (1). Para qualquer outro valor de arg w também obteremos uma solução.

Definição: Dado $z \neq 0$, **um logaritmo de** z é qualquer número complexo

$$\log_k z = \ln|z| + i\arg z$$

onde arg z é qualquer argumento de z, ou seja arg $z = Argz + 2k\pi = \theta_0 + 2k\pi = \theta_k$, $k \in \mathbb{Z}$.

OBS: De modo que, existe uma infinidade (enumerável) de valores para o logaritmo de um número complexo $z \neq 0$. Isso evidentemente não é uma função unívoca ou univalente. Entretanto, se z é um número real positivo, dentre todos os possíveis valores para o logaritmo de z, existe apenas um que coincide com o logaritmo real de z: o logaritmo de z correspondente a escolha arg z = 0.

Definição: Dado $z \neq 0$, o valor principal do logaritmo de z é dado por

$$\operatorname{Log} z = \ln |z| + i \operatorname{Arg} z$$

A função $\text{Log}: \mathbb{C} - \{0\} \to \mathbb{C}: z \mapsto \text{Log}\, z$ é denominada **Função Logaritmo Principal**.

Definição: A função multivalente **função logaritmo complexo** é dada pela família de os logaritmos de $z \neq 0$

$$\log z = \{\log_k : \mathbb{C} - \{0\} \to \mathbb{C} : z \mapsto \log_k z = \ln|z| + i\theta_k | 2k\pi \le \theta_k < 2(k+1)\pi, k \in \mathbb{Z} \}$$

Cada função dessa família é dita ser um **ramo** da função logarítmica complexa, o *k*-ésimo ramo. A função logaritmo principal, o zero-ésimo ramo, é denominado **ramo principal**.

Teorema: Para cada ramo da função logaritmo complexo tem-se que:

(i) $\log_k z$ é descontínua ao longo do eixo real positivo \mathbb{R}^+ .

(ii)
$$\log_k z$$
 é analítica em $\mathbb{C} - \mathbb{R}^+$ e $\frac{d}{dz} \log_k z = \frac{1}{z}$.

(iii) Qualquer ramo difere de outro ramo por um múltiplo inteiro de $i2\pi$.

Prova:

(i) Fixo $k \in \mathbb{Z}$, seja o k-ésimo ramo $\log_k z$. Para todo $z_0 \in \mathbb{R}^+$, conforme z se aproxima de z_0 pelo semi-plano superior arg z se aproxima de $\arg z_0 = 2k\pi$ e conforme z se aproxima de z_0 pelo semi-plano inferior arg z se aproxima de $\arg z_0 = 2(k+1)\pi$. Portanto, para z no semi-plano superior

$$\lim_{z \to z_0} \log_k z = \lim_{z \to z_0} \ln|z| + i \lim_{z \to z_0} \arg z = \ln|z_0| + i2k\pi$$

Por outro lado, para z no semi-plano inferior

$$\lim_{z \to z_0} \log_k z = \lim_{z \to z_0} \ln|z| + i \lim_{z \to z_0} \arg z = \ln|z_0| + i2(k+1)\pi$$

De modo que, os limites diferem por $2\pi i$.

(ii) Seja
$$z \neq 0$$
, $z \notin \mathbb{R}^+$, e seja $k \in \mathbb{Z}$, então

$$z = re^{i\theta_k} = r\cos\theta_k + i\sin\theta_k$$
, $2k\pi \le \theta_k < 2(k+1)\pi$

e

$$\log_{k} z = \ln r + i\theta_{k} = u(r, \theta_{k}) + iv(r, \theta_{k})$$

Então

$$u_x = u_r r_x + u_\theta \theta_x$$
 $u_y = u_r r_y + u_\theta \theta_y$
 $v_x = v_r r_x + v_\theta \theta_x$ $v_y = v_r r_y + v_\theta \theta_y$

Por outro lado,

$$r = \sqrt{x^2 + y^2} \Rightarrow \begin{cases} r_x = \frac{x}{\sqrt{x^2 + y^2}} = \frac{r \cos \theta_k}{r} = \cos \theta_k \\ r_y = \frac{y}{\sqrt{x^2 + y^2}} = \frac{r \sin \theta_k}{r} = \sin \theta_k \end{cases}$$

$$tg \theta_k = \frac{y}{x} \Rightarrow \begin{cases} \sec^2 \theta_k(\theta_k)_x = (-\frac{y}{x^2}) \Rightarrow (\theta_k)_x = (-\frac{y}{x^2}) \cos^2 \theta_k = -\frac{r \sin \theta_k}{r^2 \cos^2 \theta_k} \cdot \cos^2 \theta_k = -\frac{\sin \theta_k}{r} \\ \sec^2 \theta_k(\theta_k)_y = (\frac{1}{x}) \Rightarrow (\theta_k)_y = (\frac{1}{x}) \cos^2 \theta_k = (\frac{1}{r \cos \theta_k}) \cos^2 \theta_k = \frac{\cos \theta_k}{r} \end{cases}$$

De modo que,

$$u_x = u_r \cos \theta_k + u_\theta \left(-\frac{\sin \theta_k}{r}\right) = \frac{\cos \theta_k}{r} = \frac{(x/r)}{r} = \frac{x}{x^2 + y^2}$$

$$u_y = u_r \sin \theta_k + u_\theta \left(\frac{\cos \theta_k}{r}\right) = \frac{\sin \theta_k}{r} = \frac{(y/r)}{r} = \frac{y}{x^2 + y^2}$$

$$v_x = v_r \cos \theta_k + v_\theta \left(-\frac{\sin \theta_k}{r}\right) = -\frac{\sin \theta_k}{r} = -\frac{y}{x^2 + y^2}$$

$$v_y = v_r \sin \theta_k + v_\theta \left(\frac{\cos \theta_k}{r}\right) = \frac{\cos \theta_k}{r} = \frac{x}{x^2 + y^2}$$

Logo,

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Portanto, u e v possuem derivadas parciais de 1ª ordem contínuas em cada semi-faixa:

$$r > 0$$
; $2k\pi < \theta_k < 2(k+1)\pi$

Onde satisfazem as equações de Cauchy-Riemann, o que implica na analiticidade de cada ramo $\log_k z$. Além disso, tem-se que

$$\frac{d}{dz}\log_k z = u_x + iv_x = \frac{\cos\theta_k}{r} - i\frac{\sin\theta_k}{r} = \frac{1}{r}(\cos\theta_k - i\sin\theta_k) = \frac{1}{r}e^{-i\theta_k} = \frac{1}{re^{-i\theta_k}} = \frac{1}{z}$$

A semi-reta $\{z \in \mathbb{R}^+\}$ onde todos os ramos da função logarítmica multivalente deixam de ser funções analíticas (não são sequer contínuas) é dita ser um **corte** para os ramos.

(iii) Sejam o m-ésimo ramo

$$\log_m z = \ln|z| + i\theta_m$$
 , $2m\pi \le \theta_m < 2(m+1)\pi$

E o n-ésimo ramo

$$\log_n z = \ln |z| + i\theta_n$$
 , $2n\pi \le \theta_n < 2(n+1)\pi$

Supondo m < n, então $n = m + k, k \ge 1$. Logo,

$$\log_n z = \ln|z| + i\theta_n = \ln|z| + i(\theta_m + 2k\pi) = \log_m z + i2k\pi. \quad \blacksquare$$