A03 Heurísticas Construtivas

PEP300 Técnicas Metaheuristicas para Otimização Combinatória

Prof. Dr. George H. G. Fonseca Universidade Federal de Ouro Preto

Introdução

- Dois tipos de heurísticas
 - Construtivas constroem uma solução passo a passo, elemento por elemento
 - Refinamento consistem em melhorar uma solução através de modificações em seus elementos

- Constrói uma solução elemento por elemento
- A cada passo é adicionado um único elemento candidato
- O candidato escolhido é o melhor segundo algum critério
- O método encerra quando todos os elementos candidatos foram analisados


```
procedimento ConstrucaoGulosa(g(.),s);

1 s \leftarrow \emptyset;

2 Inicialize o conjunto C de elementos candidatos;

3 enquanto \ (C \neq \emptyset) \ faça

4 g(t_{melhor}) = melhor\{g(t) \mid t \in C\};

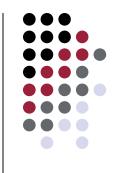
5 s \leftarrow s \cup \{t_{melhor}\};

6 Atualize o conjunto C de elementos candidatos;

7 fim-enquanto;

8 Retorne \ s;

fim ConstrucaoGulosa;
```



- Problema da mochila
 - 1º passo: calcular a relação benefício / peso

Objeto	1	2	3	4	5	6	7	8
Benefício	4	3	2	6	2	3	5	4
Peso	5	4	3	9	4	2	6	7
Benefício / peso	0,80	0,75	0,67	0,67	0,50	1,50	0,83	0,57

- Problema da mochila
 - 2º passo: ordenar os objetos

Objeto	6	7	1	2	3	4	8	5
Benefício	3	5	4	3	2	6	4	2
Peso	2	6	5	4	3	9	7	4
Benefício / peso	1,50	0,83	0,80	0,75	0,67	0,67	0,57	0,50

Problema da mochila

 3º passo: escolher o elemento de maior benefício / peso que respeite a capacidade da mochila até que não seja possível mais adicionar elementos

Objeto	6	7	1	2	3	4	8	5
Benefício	3	5	4	3	2	6	4	2
Peso	2	6	5	4	3	9	7	4
Benefício / peso	1,50	0,83	0,80	0,75	0,67	0,67	0,57	0,50

Mochila: {6}

Benefício: 3

Peso: 2

Problema da mochila

 3º passo: escolher o elemento de maior benefício / peso que respeite a capacidade da mochila até que não seja possível mais adicionar elementos

Objeto	6	7	1	2	3	4	8	5
Benefício	3	5	4	3	2	6	4	2
Peso	2	6	5	4	3	9	7	4
Benefício / peso	1,50	0,83	0,80	0,75	0,67	0,67	0,57	0,50

Mochila: {6, 7}

Benefício: 8

Peso: 8

Problema da mochila

 3º passo: escolher o elemento de maior benefício / peso que respeite a capacidade da mochila até que não seja possível mais adicionar elementos

Objeto	6	7	1	2	3	4	8	5
Benefício	3	5	4	3	2	6	4	2
Peso	2	6	5	4	3	9	7	4
Benefício / peso	1,50	0,83	0,80	0,75	0,67	0,67	0,57	0,50

Mochila: {6, 7, 1}

Benefício: 12

Peso: 13

Problema da mochila

 3º passo: escolher o elemento de maior benefício / peso que respeite a capacidade da mochila até que não seja possível mais adicionar elementos

Objeto	6	7	1	2	3	4	8	5
Benefício	3	5	4	3	2	6	4	2
Peso	2	6	5	4	3	9	7	4
Benefício / peso	1,50	0,83	0,80	0,75	0,67	0,67	0,57	0,50

Mochila: {6, 7, 1, 2}

Benefício: 15

Peso: 17

Problema da mochila

 3º passo: escolher o elemento de maior benefício / peso que respeite a capacidade da mochila até que não seja possível mais adicionar elementos

Objeto	6	7	1	2	3	4	8	5
Benefício	3	5	4	3	2	6	4	2
Peso	2	6	5	4	3	9	7	4
Benefício / peso	1,50	0,83	0,80	0,75	0,67	0,67	0,57	0,50

Mochila: {6, 7, 1, 2, 3}

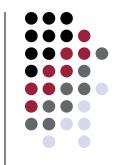
Benefício: 17

Peso: 20

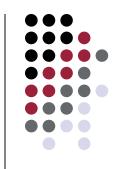
Problema da mochila

 3º passo: escolher o elemento de maior benefício / peso que respeite a capacidade da mochila até que não seja possível mais adicionar elementos

Objeto	6	7	1	2	3	4	8	5
Benefício	3	5	4	3	2	6	4	2
Peso	2	6	5	4	3	9	7	4
Benefício / peso	1,50	0,83	0,80	0,75	0,67	0,67	0,57	0,50


Mochila: {6, 7, 1, 2, 3}

Benefício: 17

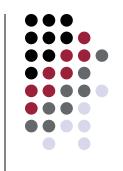

Peso: 20

Capacidade: 20

Não é possível adicionar elementos!


```
procedimento ConstrucaoGulosa(q(.), s);
    s \leftarrow \emptyset;
   Inicialize o conjunto C de elementos candidatos;
3
    enquanto (C \neq \emptyset) faça
        \overline{g(t_{max})} = \max\{g(t) \mid t \in C\};
        s \leftarrow s \cup \{t_{max}\};
        Atualize o conjunto C de elementos candidatos;
    fim-enquanto;
   Retorne s;
fim ConstrucaoGulosa;
```


- Problema do caixeiro viajante
 - Parâmetros:


C: conjunto de cidades

 d_{ij} : distância da cidade i à cidade j

Variáveis de decisão:

$$x_{ij} = \begin{cases} 1 \ caso \ a \ aresta \ (i,j)seja \ usada \\ 0 \ caso \ contrário \end{cases}$$

Problema do caixeiro viajante

• Parâmetros:

C: conjunto de cidades d_{ij} : distância da cidade i à cidade j

Variáveis de decisão:

$$x_{ij} = \begin{cases} 1 \ caso \ a \ aresta \ (i,j) \ seja \ usada \\ 0 \ caso \ contrário \\ f_{ij} = quantidade \ de \ fluxo \ de \ i \ para \ j \end{cases}$$

Problema do caixeiro viajante

Função objetivo:

$$\min \sum_{i \in C} \sum_{j \in C} d_{ij} x_{ij}$$

- Restrições:
 - 1. De cada cidade i só sai uma aresta

$$\sum_{j \in C} x_{ij} = 1 \qquad \forall i \in C$$

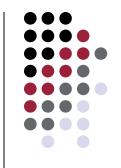
2. A cada cidade j só chega uma aresta

$$\sum_{i \in C} x_{ij} = 1 \qquad \forall j \in C$$

Problema do caixeiro viajante

- Restrições:
 - 3. O fluxo que chega a uma cidade i menos o que sai é igual a uma unidade

$$\sum_{j \in C} f_{ji} - \sum_{j \in C} f_{ij} = 1 \qquad \forall i \in C, i \neq 1$$

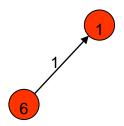

4. O fluxo máximo em cada aresta é igual a *n*-1, onde *n* é o número de cidades

$$f_{ij} \le (n-1)x_{ij} \quad \forall i \in C, \forall j \in C$$


5. Restrições de domínio

$$x_{ij} \in \{0, 1\}$$
 $\forall i \in C, \forall j \in C$
 $f_{ij} \ge 0$ $\forall i \in C, \forall j \in C$

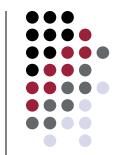
Heurísticas construtivas para o Problema do Caixiero Viajante



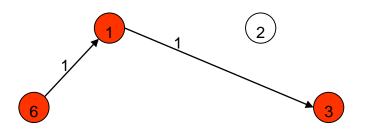
- Vizinho mais próximo
 - Ideia central: construir uma rota passo a passo, adicionando à solução corrente a cidade mais próxima (e ainda não visitada) da última cidade inserida
- Inserção mais barata
 - Ideia central: construir uma rota passo a passo, partindo de rota inicial envolvendo 3 cidades (obtidas por um método qualquer) e adicionar a cada passo, a cidade k (ainda não visitada) entre a ligação (i, j) de cidades já visitadas, cujo custo de inserção seja o mais barato

Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

i	j	d _{ij}
6	1	1
6	2	2
6	3	6
6	4	6
6	5	2



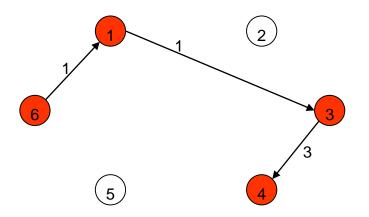
(3)



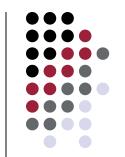


Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

i	j	d _{ij}
1	2	2
1	3	1
1	4	4
1	5	9

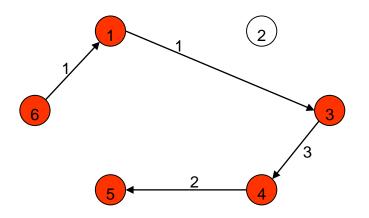


Distância total: 1 + 1 = 2

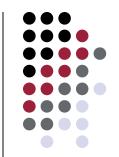


Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

i	j	d _{ij}
3	2	5
3	4	3
3	5	8

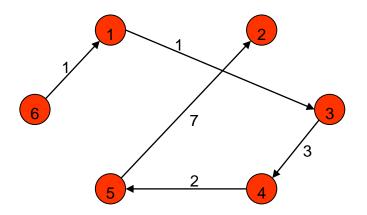


Distância total: 2 + 3 = 5

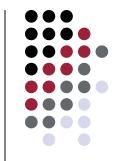


Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

i	j	D _{ij}
4	2	9
4	5	2

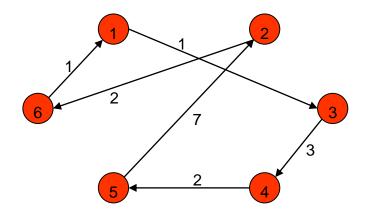


Distância total: 5 + 2 = 7



Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

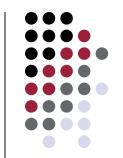
i	j	D _{ij}
5	2	7



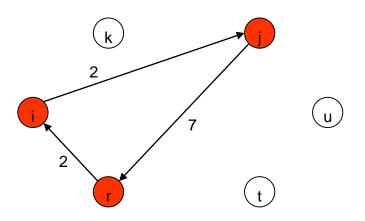
Distância total: 7 + 7 = 14

Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

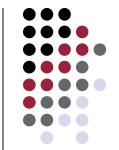
Inserção forçada para fechar o ciclo



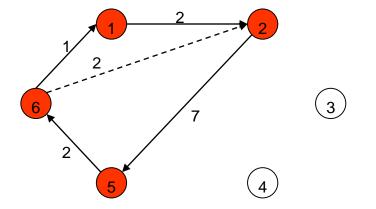
Distância total: 14 + 2 = 16



Complexidade

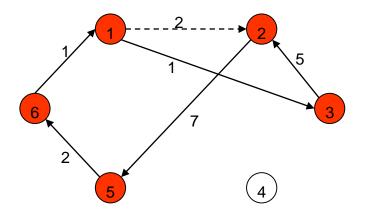

Iteração	Núm. de avaliações
1	N – 1
2	N – 2
N – 1	1
N	1
Total	1 + N(N - 1) / 2

Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

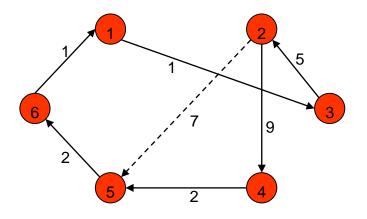


Custo da inserção de k entre i e j: d_{ik} + d_{kj} - d_{ij}

Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0


i	k	j	$d_{ik} + d_{kj} - d_{ij}$
6	1	2	1 + 2 - 2 = 1
6	3	2	6 + 5 - 2 = 9
6	4	2	6 + 9 - 2 = 13
2	1	5	2 + 9 - 7 = 4
2	3	5	5 + 8 - 7 = 6
2	4	5	9 + 2 - 7 = 4
5	1	6	9 + 1 - 2 = 8
5	3	6	8 + 6 - 2 = 12
5	4	6	2 + 6 - 2 = 6

Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0


i	k	j	$d_{ik} + d_{kj} - d_{ij}$
6	3	1	6 + 1 - 1 = 6
6	4	1	6 + 4 - 1 = 9
1	3	2	1 + 5 - 2 = 4
1	4	2	4 + 9 - 2 = 11
2	3	5	5 + 8 - 7 = 6
2	4	5	9 + 2 - 7 = 4
5	3	6	8 + 6 - 2 = 12
5	4	6	2 + 6 - 2 = 6

Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

i	k	j	$d_{ik} + d_{kj} - d_{ij}$
6	4	1	6 + 4 - 1 = 9
1	4	3	4 + 3 - 1 = 6
3	4	2	3 + 9 - 5 = 7
2	4	5	9 + 2 - 7 = 4
5	4	6	2 + 6 - 2 = 6

Complexidade

Iteração	Núm. de avaliações
1	3(N – 3)
2	4(N – 4)
i – 2	i(N - 1)
N - 3	(N - 1)(N - (N - 1))
Total	$\sum_{i=3}^{N-1} i(N-1)$

$$\sum_{i=3}^{n-1} i(n-i) = \frac{1}{6}n^3 - n^2 - \frac{5}{6}n - 3$$

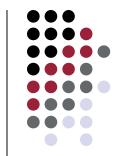
Heurística construtiva parcialmente gulosa

- Invés de inserir sempre o melhor candidato na solução a cada passo, sorteia um dentre os melhores n candidatos
- A lista dos n candidatos é conhecida como lista de candidatos restrita (LCR)
- Um parâmetro $\alpha = [0, 1]$ define a aleatoriedade/ gulosidade do método
 - α mais próximo de 0 heurística gulosa
 - α mais próximo de 1 heurística aleatória

Heurística construtiva parcialmente gulosa


```
procedimento Construcao(g(.), \alpha, s);
   s \leftarrow \emptyset;
   Inicialize o conjunto \mathcal{C} de candidatos;
   enquanto (\mathcal{C} \neq \emptyset) faça
         q(t_{min}) = \min\{q(t) \mid t \in \mathcal{C}\};
5
         g(t_{max}) = \max\{g(t) \mid t \in \mathcal{C}\};
        LCR = \{t \in \mathcal{C} \mid g(t) \leq g(t_{min}) + \alpha(g(t_{max}) - g(t_{min}))\};
         Selecione, aleatoriamente, um elemento t \in LCR;
  s \leftarrow s \cup \{t\};
         Atualize o conjunto \mathcal{C} de candidatos;
    fim-enquanto;
11 Retorne s;
fim Construcao;
```

Heurística construtiva parcialmente gulosa


- Problema do caixeiro viajante
 - Ordenar as cidades não vizitadas da mais próxima para a mais distante da atual
 - Definir o tamanho da lista restrita de candidatos (LRC)

[tamLRC = tamMin +
$$\alpha$$
(tamMax - tamMin)]

tamLRC =
$$1 + 0(8 - 1) = 1$$

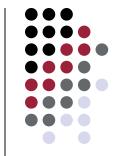
tamLRC = $1 + 0.3(8 - 1) = 3,1 = 4$
tamLRC = $1 + 0.5(8 - 1) = 4,5 = 5$
tamLRC = $1 + 1(8 - 1) = 8$

A cada elemento adicionado, recalcular o tamanho da LRC


Heurística construtiva parcialmente gulosa para o PCV

Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

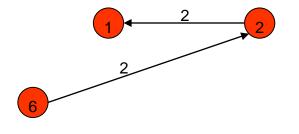
i	j	d _{ij}
6	1	1
6	2	2
6	5	2
6	3	6
6	4	6


Sorteado

(3)

Supondo
$$\alpha = 0.3$$

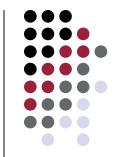
tamLRC = 1 + 0.3(5 - 1) = 2.2 \rightarrow 3


Heurística construtiva parcialmente gulosa para o PCV

Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

i	j	d _{ij}
2	1	2
2	3	5
2	5	7
2	4	9

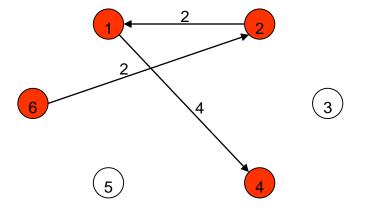
Sorteado



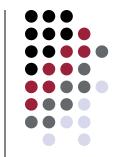
(3)

Supondo
$$\alpha = 0.3$$

tamLRC = 1 + 0.3(4 - 1) = 1.9 \rightarrow 2


Heurística construtiva parcialmente gulosa para o PCV

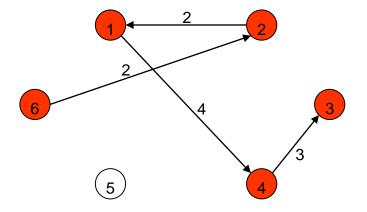
Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0


i	j	d _{ij}
1	3	1
1	4	4
1	5	9

Sorteado

Supondo
$$\alpha = 0.3$$

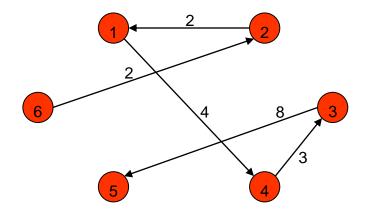
tamLRC = 1 + 0.3(3 - 1) = 1.6 \rightarrow 2
Distância total: 8


Heurística construtiva parcialmente gulosa para o PCV

Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

i	j	d _{ij}
4	5	2
4	3	3

Sorteado

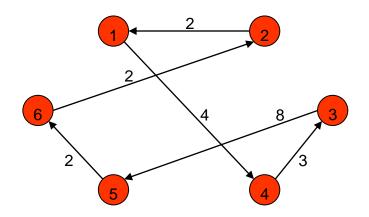

Supondo
$$\alpha = 0.3$$

tamLRC = 1 + 0.3(2 - 1) = 1.3 \rightarrow 2
Distância total: 11

Heurística construtiva parcialmente gulosa para o PCV

Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

i	j	d _{ij}	
3	5	8	Sorteado

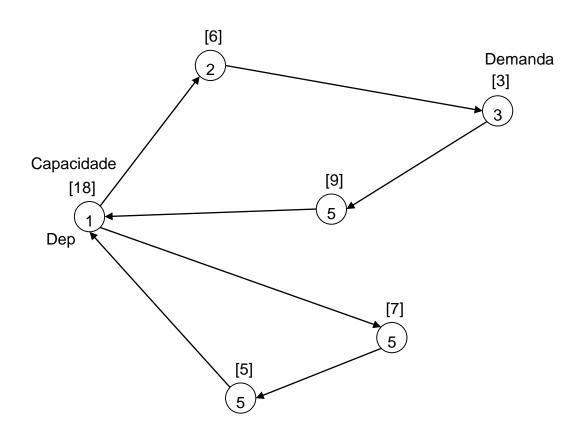

Supondo
$$\alpha = 0.3$$

tamLRC = 1 + 0.3(1 - 1) = 1
Distância total: 19

Heurística construtiva parcialmente gulosa para o PCV

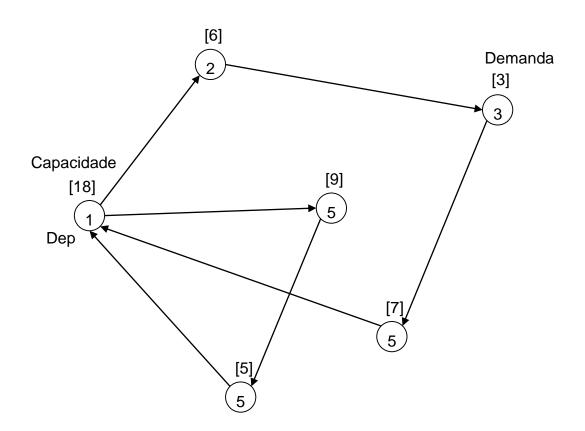
Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

Inserção forçada para fechar o ciclo


Distância total: 21

Problema do Roteamento de Veículos

- Dados de entrada
 - Um depósito
 - Uma frota de veículos, com base no depósito
 - Um conjunto de clients
 - A demanda de cada cliente
 - Uma matriz de distâncias D = d_{ij} entre depósito e clientes e entre pares de clientes
 - Cidades = depósito U clientes
- PRV consiste em encontrar um conjunto de rotas para os veículos tal que:
 - Cada rota comece e termine no depósito
 - Cada cliente seja atendido por um único veículo
 - A capacidade dos veículos seja respeitada
 - A distância total percorrida seja a menor possível


Problema do Roteamento de Veículos

Problema do Roteamento de Veículos

Formulação Matemática para o PRV

Dados de entrada

- C: conjunto formado por um depósito (1) e clientes
- d_{ii}: distância entre as cidades i e j
- dem_i: demanda da cidade i
- cap: capacidade dos veículos

Variáveis de decisão

- x_{ii}: 1 se a aresta (i, j) será usada; 0 caso contrário
- f_{ij}: quantidade de fluxo de i para j

Função objetivo

$$\min \sum_{i \in C} \sum_{j \in C} d_{ij} x_{ij}$$

Formulação Matemática para o PRV

- Restrições
 - De cada cidade i, exceto o depósito (1), só sai um veículo

$$\sum_{j \in C} x_{ij} = 1 \qquad \forall i \in C, i \neq 1$$

A cada cidade j, exceto o depósito, só chega um veículo

$$\sum_{i \in C} x_{ij} = 1 \qquad \forall j \in C, j \neq 1$$

 O número de veículos que saem do depósito é igual ao que chegam ao depósito

$$\sum_{j \in C} x_{1j} = \sum_{i \in C} x_{i1}$$

Formulação Matemática para o PRV

Restrições

 Ao passar por uma cidade j, exceto o depósito, o veículo deve atender a demanda dessa cidade, isto é, deve deixar dem_j unidades de produto na cidade j

$$\sum_{i \in C} f_{ij} - \sum_{i \in C} f_{ji} = dem_i \quad \forall j \in C$$

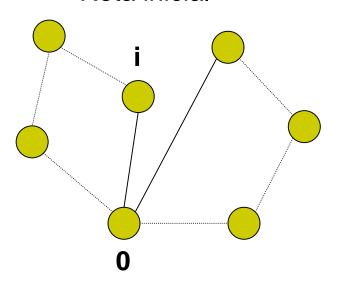
- O fluxo máximo em cada aresta não pode superar a cap. do veículo $f_{ij} \le cap \ x_{ij} \quad \forall \ i \in C, \forall \ j \in C$
- Domínio das variáveis

$$x_{ij} \in \{0, 1\}$$
 $\forall i \in C, \forall j \in C$
 $f_{ij} \ge 0$ $\forall i \in C, \forall j \in C$

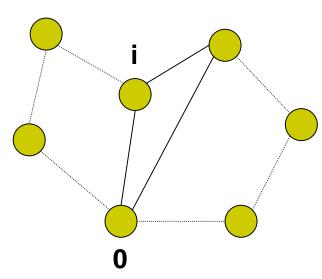
Adaptação da heurística do vizinho mais próximo para o PRV

- Ideia principal
 - Passo 1: partir de um depósito com um novo veículo e ir até a cidade mais próxima ainda não visitada
 - Passo 2: determinar a cidade mais próxima da última cidade inserida na rota e verificar se é possível atender sua demanda
 - Passo 3: Se for possível atender a demanda dessa cidade, adicionála à rota. Caso contrário, retornar ao depósito e voltar ao passo 1

Heurística Construtiva de Clark & Wright para o PRV



- Ideia principal
 - Colocar um veículo atendendo cada cliente, isto é, considerar n veículos saindo do depósito, atendendo cada qual a um único cliente e retornando ao depósito;
 - Unir as rotas de cada veículo com base no conceito de economia
- À medida que se reduz a distância total percorrida, o número de veículos necessários também é reduzido


Heurística Construtiva de Clark & Wright para o PRV

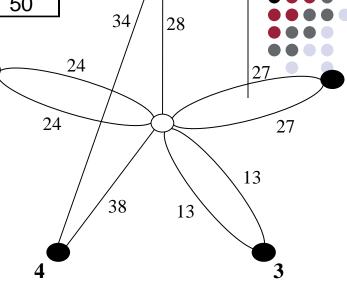
Rota inicial

Rota combinada

Economia $s_{ij} = d_{i0} + d_{0j} - d_{ij}$

i e j devem ser clientes das extremidades das rotas

Cidades	1	2	3	4	5	CAP
Demanda	15	17	27	12	23	50



i	j	$\mathbf{d_{i0}}$	$\mathbf{d}_{\mathbf{i}0}$	$\mathbf{d_{ii}}$	S _{ii}	Dem

$s_{ij} = d_{i0} + d_{j0} - d_{ij}$

							1 •••
Cida	ades	1	2	3	4	5	CAP
Dem	anda	15	17	27	12	23	50
							28 28
						5	24 27 2
i	j	$\mathbf{d_{i0}}$	$\mathbf{d_{j0}}$	$\mathbf{d}_{\mathbf{i}\mathbf{j}}$	$\mathbf{S_{ij}}$	Dem	24 27
1	2	28	27	52	3	32	27
1	3	28	13	32	9	42	38/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1	4	28	38	34	32	27	38 13
1	5	28	24	52	0	38	
2	3	27	13	20	20	44	4 3
2	4	27	38	43	22	29	
2	5	27	24	27	24	40	52
3	4	13	38	28	23	39	52 34 32 52
3	5	13	24	32	5	50	28
4	5	38	24	43	19	35 ⁵	27 / 27 / 2
							224
Tota	l per	corrido	. 5	260			43
	•	ninhões		5			43 $\sqrt{38}$ $\sqrt{20}$
IN GE	t Call	11111068).	ິວ			38/

Cidades	1	2	3	4	5	CAP
Demanda	15	17	27	12	23	50

i	j	$\mathbf{d_{i0}}$	$\mathbf{d_{j0}}$	$\mathbf{d}_{\mathbf{i}\mathbf{j}}$	S_{ij}	Dem
1	2	28	27	52	3	44
1	3	28	13	32	9	54
1	5	28	24	52	0	50
2	3	27	13	20	20	44
2	4	27	38	43	22	44
2	5	27	24	27	24	40
3	4	13	38	28	23	54
3	5	13	24	32	5	50
4	5	38	24	43	19	50

Total percorrido:	228
Nº de caminhões:	4


Cidades	1	2	3	4	5	CAP
Demanda	15	17	27	12	23	50
Demanda	15	17	21	12		50

5	CAP	/		
23	50	/		
		34/	28	
			27	• • • •
5			-	2
Dem	24	\	27	7
67				
54	/	/ /	\setminus 13	
67		38	13	
67			13	
67	4			3
54	4			J

i	j	$\mathbf{d_{i0}}$	$\mathbf{d_{j0}}$	$\mathbf{d_{ij}}$	$\mathbf{S_{ij}}$	Dem
1	2	28	27	52	3	67
1	3	28	13	32	9	54
1	5	28	24	52	0	67
2	3	27	13	20	20	67
2	4	27	38	43	22	67
3	4	13	38	28	23	54
3	5	13	24	32	5	67
4	5	38	24	43	19	67

Total percorrido:	204
Nº de caminhões:	3

Bibliografia

- Souza, M. J. F. Inteligência Computacional para Otmização. Disponível em www.iceb.ufop.br/decom/prof/marcone/ico2009, acessado em Agosto de 2019.
- Martins, A. X. Heurísticas e Metaheurísticas. Material didático, 2018.