

Métodos de Busca Heurística para Problemas de Programação de Horários Modelados em XHSTT

Aluno Orientador Coorientador

George H. G. Fonseca Haroldo G. Santos, PhD Túlio A. M. Toffolo, MSc

Sumário

- Introdução
- Problema da Programação de Horários
- Técnicas Heurísticas
- Experimentos Computacionais
- Considerações Finais

Introdução

- Alvo de diversas pesquisas
 - Dificuldade de resolução
 - Importância prática
 - Importância teórica

Introdução

- Competições Internacionais
 - ITC2003
 - ITC2007
 - ITC2011-12

- Modelo da ITC2011-12
 - Aborda várias particularidades do problema
- Entidades
 - Horários
 - Recursos

Eventos

- Restrições
 - Agendamento
 - Assign Times
 - Assign Resources
 - Prefer Times
 - Prefer Resources

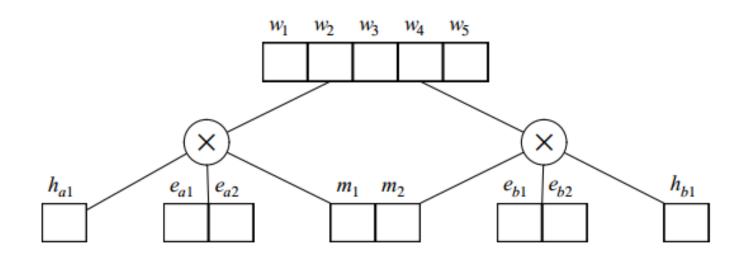
- Restrições
 - Eventos
 - Link Events
 - Spread Events
 - Avoid Split Assignments
 - Distribute Split Events
 - Split Events

- Restrições
 - Recursos
 - Avoid Clashes
 - Avoid Unavailable Times
 - Limit Workload
 - Limit Idle / Busy Times
 - Cluster Busy Times

- Função Objetivo
 - Factibilidade
 - Qualidade

Formato XHSTT

```
<HighSchoolTimetableArchive>
  <Instances>
    <Instance Id="Sudoku4x4">
       <Times>
       </Times>
       <Resources>
       </Resources>
       <Events>
       </Events>
       <Contraints>
       </Contraints>
    </Instance>
  </Instances>
  <SolutionGroups>
  </SolutionGroups>
</HighSchoolTimetableArchive>
```

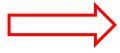


• ITC2011-12

	Nome			Esforço		
Número	do projeto	País	Registro	estimado		
1	Ying	China	Out 11, 2011	Desconhecido		
2	HSU	Alemanha	Out 13, 2011	Desconhecido		
3	Borburata	Venezuela	Out 14, 2011	Desconhecido		
4	Bond	Canadá	Out 17, 2011	10 – 50 dias		
5	Optable	Brasil	Nov 1, 2011	Desconhecido		
6	Agata	Brasil	Nov 25, 2011	50 – 100 dias		
7	Aziz	Malásia	Jan 7, 2012	50 – 100 dias		
8	HST	Polônia	Jan 7, 2012	50 – 100 dias		
9	VAGOS	Grécia	Jan 23, 2012	10 – 50 dias		
10	Join	Índia	Fev 2, 2012	< 10 dias		
11	Lectio	Dinamarca	Fev 12, 2012	> 100 dias		
12	Saman	Sri Lanka	Fev 19, 2012	Desconhecido		
13	DarwinEd	Chile	Fev 23, 2012	< 10 dias		
14	GOAL	Brasil	Fev 24, 2012	> 100 dias		
15	HySST	Reino Unido	Mar 6, 2012	10 – 50 dias		
16	HFT	Alemanha	Abr 18, 2012	> 100 dias		
17	Aspen	Estados Unidos	Abr 20, 2012	< 10 dias		

- Método Construtivo
 - KHE
 - Layer tree
 -

- Estrutura de vizinhança
 - Event swap

Mo	Tu	We	Th	Fr
T3-S1	T2-ST	T7-S1	T7-S1	T4-S1
T3-S1	T2-S1	T7-S1	T7-S1	T1-S1
T7-S1	T3-S1	T6-S1	T4-S1	T1-S1
T6-S1	T8-S1	T6-S1	T4-S1	T2-S1
T6-S1	T8-S1	T2-S1	T1-S1	T2-S1



Mo	Tu	We	Th	Fr		
T3-S1	T2-S1	T7-S1	T7-S1	T4-S1		
T7-S1	T2-S1	T7-S1	T3-S1	T1-S1		
T7-S1	T3-S1	T6-S1	T4-S1	T1-S1		
T6-S1	T8-S1	T6-S1	T4-S1	T2-S1		
T6-S1	T8-S1	T2-S1	T1-S1	T2-S1		

- Estrutura de vizinhança
 - Event move

Mo	Tu	We	Th	Fr
			T1-S3	T1-S3
			T1-S3	T1-S1
			T1-82	T1-S1
			T1-S2	
	(T1-S2	T1-S1	

Mo	Tu	We	Th	Fr
			T1-S3	T1-S3
			T1-S3	T1-S1
			T1-S2	T1-S1
			T1-S2	T1-S2
			T1-S1	

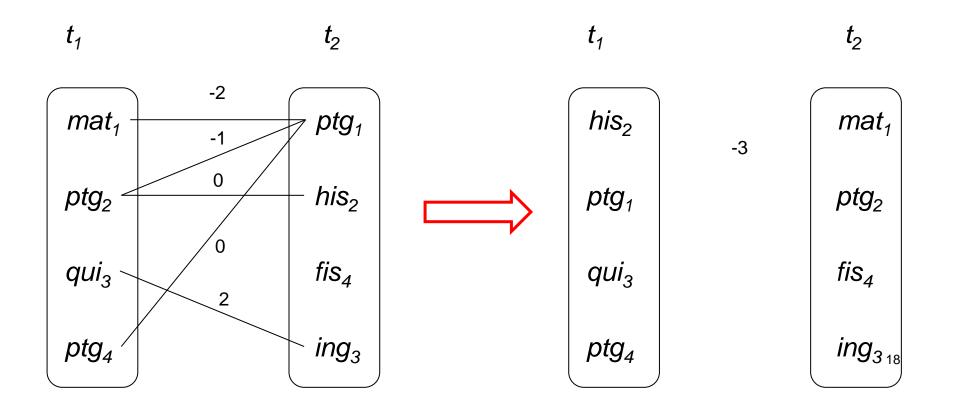
- Estrutura de vizinhança
 - Event block move

Mo	Tu	We	Th	Fr		
T7-S1	T2-S1	T7-S1	T7-S1	T4-S1		
T3-S1	T2-S1	T7-S1	T7-S1	T1-S1		
T3-S1	T3-S1	T6-S1	T4-S1	T1-S1		
T6-S1	T8-S1	T6-S1	T4-S1	T2-S1		
T6-S1	T8-S1	T2-S1	T1-S1	T2-S1		

Mo	Tu	We	Th	Fr
T3-S1	T2-S1	T7-S1	T7-S1	T4-S1
T3-S1	T2-S1	T7-S1	T7-S1	T1-S1
T7-S1	T3-S1	T6-S1	T4-S1	T1-S1
T6-S1	T8-S1	T6-S1	T4-S1	T2-S1
T6-S1	T8-S1	T2-S1	T1-S1	T2-S1

- Estrutura de vizinhança
 - Resource swap

Mon Tue		Wed	Mon	Tue	Wed
RA-4A	SC-3A	IN-3A	RA-4A	SC-3A	IN-3A
Class: 4A	Class: 3M	Class: 3A	Class: 4A	Class: 3A	Class: 3A
Teacher: Grigi	Teacher: Bianchi	Teacher: Verdi	Teacher: Bianchi	Teacher: Grigi	Teacher:
RA-3A	MA-3A	FR-3A	RA-3A	MA-3A	FR-3A
Class: 3A	Class: 3A	Class: 3A	Class: 3A	Class: 3A	Class: 3A
Teacher: Grigi	Teacher: Azzurri	Teacher: Arancioni	Teacher: Grigi	Teacher: Azzurri	Teacher:
Ner-DD	RA-5A	IT-5A	Ner-DD	RA-5A	IT-5A
Teacher: Neri	Class: 5A	Class: 5A	Teacher: Neri	Class: 5A	Class: 5A
	Teacher: Grigi	Teacher: Viola		Teacher: Grigi	Teacher:



- Estrutura de vizinhança
 - Resource move

Mon	Tue	Wed
RA-4A	SC-3A	IN-3A
Class: 4A	Class: 3A	Class: 3A
Teacher: Bianchi	Teacher: Grigi	Teacher: Verdi
RA-3A	MA-3A	FR-3A
Class: 3A	Class: 3A	Class: 3A
Teacher: Grigi	Teacher: Azzurri	Teacher: Arancioni
Ner-DD Teacher: Neri	RA-5A Class: 5A Teacher: Grigi	IT-5A Class: 5A Teacher: Viola

- Estrutura de vizinhança
 - Kempe move

Mo Tu We

Th

T1-S1

Fr

T1-S2 T1-S3

Th

T1-S3

Fr

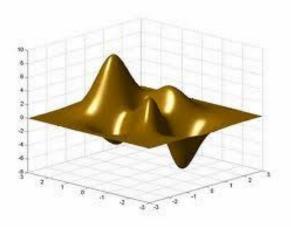
T1-S1 T1-S2

- Estrutura de vizinhança
 - Permut resources

T1

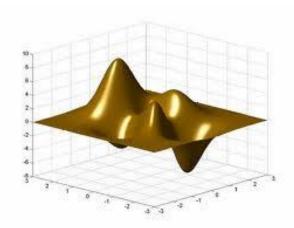
Mo	Tu	We	Th	Fr
			T1-S3	T1-S1
			T1-S2	

Mo	Tu	We	Th		Fr				Mo	Tu	W	Э	Th	Fr
			T1-	-S3	T1-5	S 2							T1-S1	T1-S3
			T1-	·S1									T1-S2	
							e	Tł		Fr				
							_							
					_	L								
								T1	-S2	T1-	S1			
								T1	-S3					

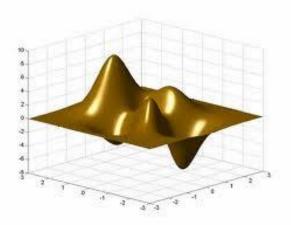

- Estrutura de vizinhança
 - Denotemos N(s) a vizinhança completa e N_k(s) a vizinhança a respeito do tipo de movimento k
 - Seleciona-se um movimento k em N(s) de acordo com as seguintes probabilidades

•	ES = 0.20	0.40
•	EM = 0.38	0.38
•	EBM = 0.10	0.20
•	RS = 0.20	-
•	RM = 0.10	-
•	KM = 0.02	0.02

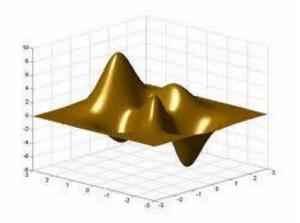
 Posteriormente os elementos a serem usados no movimento são escolhidos sob uma distribuição uniforme



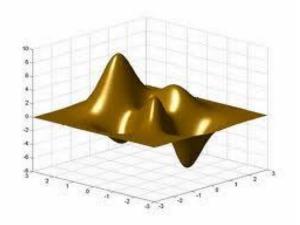
- Métodos de Busca Local
 - Método Não Ascendente Randômico
 - Gera-se um vizinho s' ∈ N(s)
 - Se $f(s') \le f(s)$, s' passa a ser a solução corrente
 - Apenas sub-rotina para metaheurísticas



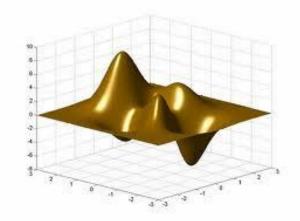
- Métodos de Busca Local
 - Simulated Annealing
 - Aceita vizinho (ou não) de acordo com uma dada "temperatura" T
 - Maior chance de aceitar vizinhos piores no começo da busca, onde a temperatura é alta
 - Quando T → 0, atua como método de descida



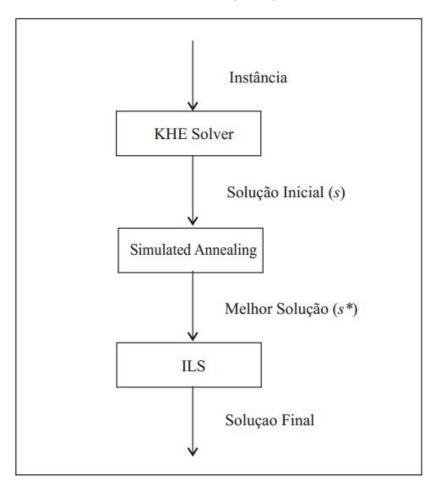
- Métodos de Busca Local
 - Iterated Local Search
 - Perturbações cada vez maiores na solução seguidas de busca local para corrigi-las
 - E possivelmente escapar de ótimos locais
 - Perturbação é dada por $N_k(s)$, sendo k = PR ou k = KM



- Métodos de Busca Local
 - Late Acceptance Hill Climbing
 - Armazena-se uma lista l_i de fitness da solução corrente na iteração i
 - Compara-se um vizinho s' ∈ N(s) com o valor armazenado em I_i, vigente a |I| iterações



- Métodos de Busca Local
 - Variable Neighborhood Search
 - A cada iteração uma classe k de vizinhança é selecionada
 - Gera-se um vizinho s' ∈ N_k(s) e executa-se o método não ascendente randômico sobre o mesmo gerando s"
 - Note que s' pode ser pior que s porém s" pode ainda ser melhor que s



- Métodos de Busca Local
 - Variable Neighborhood Search (Variações)
 - Reduced (RVNS) sem a fase de descida (método não ascendente randômico)
 - Decomposition (VDNS) fase de descida considera um valor de k por iteração
 - Skewed (SVNS) s" pode ainda ser aceito caso não seja α% distante de s

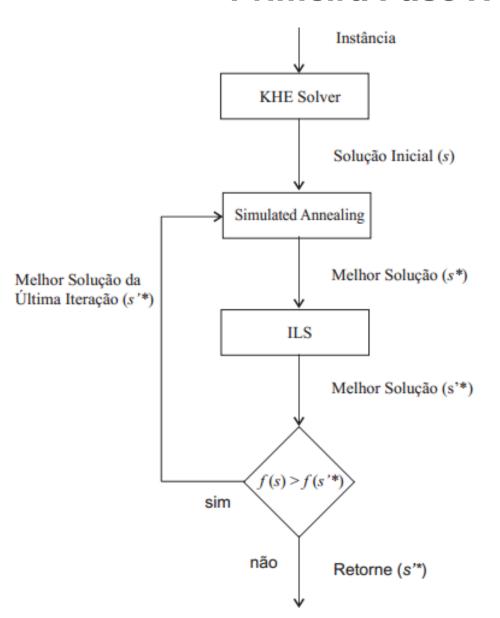
Resolvedor submetido à ITC2011-12

Experimentos Computationais

- Intel i5 2.4Ghz 4GB RAM Ubuntu 11.0
 - C++ GCC4.6.1
- Benchmark

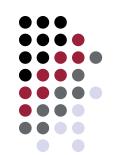
Experimentos Computationais *Instâncias públicas*

Instância	Timeslets	Professores	Salas	Classes	Duração
Australia BGHS98	40	56	45	30	1564
AustraliaSAHS96	60	43	36	20	1876
Australia 1 ES99	30	31	200	13	806
BrazilLustance1	25	8		3	75
BrazilInstance4	25	23		12	300
BrazilInstance 5	25	31		13	325
BrazilInstance 6	25	30		14	350
BraziUnstance7	25	33		20	500
EnglandStPaul	27	68	67	Ô7	1227
Finl and Artificial School	20	22	12	13	200
Finland College	40	46	34	31	854
Finland High School	35	18	13	10	297
SecondarySchool	35	25	25	14	306
Greece High School 1	35	29		66	372
Greece Patras 3rd HS 2010	35	29		84	340
Greece Preveza 3rd HS 2008	35	29		68	340
ItalyInstance1	36	13		3	133
NetherlandsGEPRO	44	132	80	44	2675
Nether lands Kotten park 2003	38	75	41	18	1203
Nether lands Kotten park 2005	37	78	42	26	1272
South A frica Lewitt 2009	148	19	2	16	838


Experimentos Computationais *Instâncias ocultas*

Instância	Times	Professores	Salas	Classes	Duração
BrazilInstance 2	25	14		6	150
BrazilInstance3	25	16		8	200
BrazilInstance4	25	23		12	300
BrazilInstance 6	25	30		14	350
$Finland {\it Flementary School}$	35	22	21	291	445
FinlandSecondarySchool2	40	22	21	469	566
Aigio1stHighSchool10-11	35	37		208	532
Italy_Instance4	36	61		38	1101
KosovaInstance1	62	101		63	1912
Kottenpark2003	38	75	41	18	1203
Kottenpark2005A	37	78	42	26	1272
Kottenpark2008	40	81	11	34	1118
Kottenpark2009	38	93	53	48	1301
Woodlands 2009	42	40			1353
Spanishschool	35	66	4	21	439
We stern Greece University 3	35	19		6	210
Western Greece University4	35	19		12	262
$We stern Greece \ University 5$	35	18		6	184

Experimentos Computationais *Primeira Fase ITC2011-12*



Experimentos Computationais *Primeira Fase ITC2011-12*

Instância	ITC $f(s_*)$	GOAL $f(s_*)$
AustraliaBGHS98	7 / 433	4 / 367
AustraliaSAHS96	23 / 44	10/ 12
Australia TES 99	26 / 134	5 / 148
BrazilInstance1	0 / 24	0 / 15
BrazilInstance4	0 / 112	0 / 103
BrazilInstance5	0 / 225	0 / 198
BrazilInstance6	0 / 209	0 / 156
BrazilInstance7	0 / 330	0 / 294
EnglandStPaul	0 / 18444	0 / 11732/
FinlandArtificialSchool	0 / 0	0/0
FinlandCollege	0 / 0	0/0
Finland High School	0 / 1	0 / 1
Finland Secondary School	0 / 106	0 / 102
GreeceHighSchool1	0 / 0	0/0
GreecePatras3rdHS2010	0 / 0	0 / 0
GreecePreveza3rdHS2008	0 / 0	0/0
ItalyInstance1	0 / 28	0 / 23
NetherlandsGEPRO	1 / 566	1 / 382
Netherlands Kottenpark 2003	0 / 1410	0 / 1189
Netherlands Kottenpark 2005	0 / 1078	0 / 963
SouthAfricaLewitt2009	0 / 58	0 / 0

Experimentos Computationais *Primeira Fase ITC2011-12*

			Equipe
Instância	ITC $f(s^*)$	Melhor $f(s^*)$	vencedora
AustraliaBGHS98	7 / 433	3 / 494	HySTT
AustraliaSAHS96	23 / 44	8 / 52	HySTT
Australia TES 99	26 / 134	1 / 140	HySTT
BrazilInstance1	0 / 24	0 / 11	VAGOS
BrazilInstance4	0 / 112	0 / 44	VAGOS
BrazilInstance5	0 / 225	0 / 43	VAGOS
BrazilInstance6	0 / 209	0 / 77	VAGOS
BrazilInstance 7	0 / 330	0 / 122	VAGOS
EnglandStPaul	0 / 18444	0 / 136	Lectio
Finland Artificial School	0 / 0	-	-
Finland College	0 / 0	-	-
Finland High School	0 / 1	-	-
Finland Secondary School	0 / 106	0 / 88	Lectio
GreeceHighSchool1	0 / 0	-	-
GreecePatras3rdHS2010	0 / 0	-	-
GreecePreveza3rdHS2008	0 / 0	-	-
ItalyInstance1	0 / 28	0 / 12	VAGOS
Netherlands GEPRO	1 / 566	1 / 382	GOAL
NetherlandsKottenpark2003	0 / 1410	0 / 532	Lectio
Netherlands Kottenpark 2005	0 / 1078	0 / 533	Lectio
South A frica Lewitt 2009	0 / 0	0 / 0	VAGOS

Experimentos Computationais *Segunda Fase ITC2011-12*

	KHI	E	GOAL		
Instância	$f(s^*)$	$/t_s$	$f(s^*)$	$f(\overline{s})$	σ
BrazilInstance2	4 / 90	0	1 / 54	1,0 / 63,9	$\pm 0.0 / \pm 6.5$
BrazilInstance3	3 / 240	1	0 / 11	0,0 / 127,8	$\pm 0.0 / \pm 7.9$
BrazilInstance4	39 / 144	1	17 / 92	17,2 / 99,6	$\pm 0.4 / \pm 5.9$
BrazilInstance6	11 / 291	0	4 / 207	4,0 / 223,5	±0,0 / 10,4
Finl and Elementary School	9 / 30	6	0/3	0,0 / 4,0	±0,0 / ±0,5
Finl and Secondary School 2	2 / 1821	109	0/0	0,0 / 0,4	±0,0 / ±0,7
Aigio1stHighSchool10-11	14 / 757	20	0 / 4	0,0 / 15,3	±0,0 / ±7,9
Italy_Instance4	39 / 21238	28	0 / 305	0,0 / 658,4	±0,0 / ±280,2
KosovaInstance1	1333 / 566	152	0 / 4238	14,0 / 6934,4	±10,7 / ±1862,4
Kottenpark2003	3 / 78440	402	0 / 41479	0,6 / 90195,8	±0,7 / ±17996,0
Kottenpark2005A	35 / 23677	489	33 / 27929	33,9 / 27480,4	±0.9 / ±2759.2
Kottenpark2008	63 / 140083	333	25 / 27410	25,7 / 31403,7	±0,7 / ±3969,3
Kottenpark2009	55 / 211095	229	33 / 159895	36,6 / 154998,5	$\pm 2.1 / \pm 24265.8$
Woodlands 2009	19 / 0	22	2 / 10	2,0 / 15,8	±0,0 / ±2,8
Spanishschool	1 / 4103	17	0 / 642	0,0 / 865,2	±0,0 / ±177,4
We stern Greece University 3	0 / 30	126	0 / 5	0,0 / 5,6	±0,0 / ±0,5
We stern Greece University 4	0 / 41	92	0 / 6	0,0 / 7,4	±0,0 / ±1,0
We stern Greece University 5	17 / 44	50	9/0	0,0 / 0,0	±0,0 / ±0,0
Média	91,5 / 26816,1	115,4	6,4 / 14577,6	7,5 / 17394,4	$\pm 0.9 / \pm 2853.0$

Experimentos Computationais *Segunda Fase ITC2011-12*

Instância	GOAL	HFT	HySST	Lectio
BrazilInstance2	-	3	2	1
BrazilInstance3	-	3	1	2
BrazilInstance4	-	3	1,9	1,1
BrazilInstance6	-	3	2	1
Finl and Elementary School	1,9	4	2,95	1,15
FinlandSecondarySchool2	1	4	2,4	2,6
Aigio1stHighSchool10-11	1	4	2,8	2,2
Italy_Instance4	1,1	4	3	1,9
KosovaInstance1	1	3	4	2
Kottenpark2003	1,4	4	1,6	3
Kottenpark 2005 A	1,4	3,6	1,6	3,4
Kottenpark2008	1	4	2,1	2,9
Kottenpark2009	1	4	2	3
Woodlands 2009	14	4	2,8	1,5
Spanishschool	1	4	2	3
We stern Greece University 3	1	3	2	4
We stern Greece University 4	1	4	2	3
We stern Greece University 5	1	4	2	3
Média	1,18	3,64	2,23	2,32

Experimentos Computationais *Terceira Fase ITC2011-12*

Instância	$\operatorname{GOAL} f(s)$
BrazilInstance 2	0 / 32
BrazilInstance3	0 / 101
BrazilInstance4	1 / 136
BrazilInstance 6	0 / 160
Finl and Elementary School	0/3
Finl and Secondary School 2	0 / 0
Aigio1stHighSchool10-11	0 / 0
$Italy_Instance4$	0 / 61
KosovaInstance1	0 / 3
Kottenpark2003	0 / 5355
Kottenpark 2005 A	24 / 13930
Kottenpark2008	8 / 27909
Kottenpark2009	19 / 5565
Woodlands 2009	0 / 441
Spanishschool	0 / 12
We stern Greece University 3	0 / 5
We stern Greece University 4	0 / 8
We stern Greece University 5	0/0

Experimentos Computationais *Terceira Fase ITC2011-12*

Instância	GOAL	HFT	HySST	Lectio	VAGOS
BrazilInstance 2	-	4	3	2	1
BrazilInstance3	-	4	3	2	1
BrazilInstance4	-	4	3	2	1
BrazilInstance 6		4	3	1	2
Finl and Elementary School	2,5	2,5	2,5	2,5	-
Finl and Secondary School 2	2	4	2	2	-
Aigio1stHighSchool10-11	1	4	3	2	-
Italy_Instance4	2	4	1	3	-
KosovaInstance1	1	3	2	4	-
Kottenpark2003	3	4	2	1	-
Kottenpark 2005 A	2	3	1	4	-
Kottenpark2008	1	4	2	3	-
Kottenpark2009	2	4	1	3	-
Woodlands 2009	1	4	2	3	-
Spanishschool	1	4	3	2	-
We stern Greece University 3	1,5	4	3	5	1,5
$We stern Greece {\it University4}$	1	3	2	4	-
We stern Greece University 5	2	4	2	5	2
Média	1,64	3,75	2,25	2,75	3,86

Experimentos Computationais

	•	•	
		lacktriangle	
	lacktriangle		
_			

Instância	KHE	SA	ILS	LAHC
BrazilInstance2	4 / 90	0,0 / 107,6	0,0 / 42,2	0,0 / 78,6
BrazilInstance3	3 / 240	0,0 / 170,6	0,0 / 105,8	0,0 / 145,6
BrazilInstance4	39 / 144	2,0 / 167,4	5,2 / 122,6	8,2 / 121,4
BrazilInstance 6	11 / 291	0,0 / 332,2	1,0 / 158,4	1,4 / 204,8
Finl and Elementary School	9 / 30	0,0 / 10,8	0,0 / 3,6	0,0 / 3,8
Finl and Secondary School 2	2 / 1821	0,0 / 1036,4	0,0 / 0,8	0,0 / 0,4
Aigio1stHighSchool10-11	14 / 757	0,0 / 397,4	0,0 / 12,2	0,8 / 11,4
Italy_Instance4	39 / 21238	0,0 / 13979,0	0,0 / 405,2	0,0 / 224,8
KosovaInstance1	1333 / 566	3,0 / 5837,8	0,2 / 19,0	14,2 / 1504,8
Kottenpark 2003	3 / 78440	0,4 / 90052,4	1,8 / 9370,2	1,6 / 9711,0
Kottenpark 2005 A	35 / 23677	30,0 / 33967,0	33,4 / 17679,8	33,0 / 18671,0
Kottenpark 2008	63 / 140083	10,0 / 138993,8	14,4 / 23683,8	15,2 / 23855,0
Kottenpark 2009	55 / 211095	24,6 / 432784,0	31,8 / 7976,0	28,0 / 9192,0
Woodlands 2009	19 / 0	2,0 / 223 8	2,0 / 9,2	2,0 / 13,2
Spanish school	1 / 4103	0,0 / 7077,6	0,0 / 773,8	0,0 / 846,0
We stern Greece University 3	0 / 30	0,0 / 28,4	0,0 / 5,0	0,0 / 5,0
We stern Greece University 4	0 / 41	0,0 / 39,4	0,0 / 6,6	0,0 / 9,2
We stern Greece University 5	17 / 44	0,0 / 56,0	0,0 / 0,0	0,0 / 0,0
Média	91,5 / 26816,1	4,0 / 40292,3	5,0 / 3354,1	5,8 / 3588,8

Experimentos Computationais

•	

Instância	VNS	RVNS	VDNS	SVNS
BrazilInstance2	0,0 / 40,6	2,2 / 71,4	0,6 / 63,8	0,0 / 35,8
BrazilInstance 3	0,0 / 113,0	2,4 / 151,4	1,6 / 136,8	0,0 / 105,8
BrazilInstance 4	4,8 / 108,2	21,0 / 112,8	13,6 / 103,4	3,8 / 132,4
BrazilInstance 6	0,0 / 157,4	6,0 / 271,0	2,2 / 231,2	0,0 / 145,8
Finl and Elementary School	0,0 / 3,4	2,6 / 7,4	0,0 / 4,0	0,0 / 3.8
Finl and Secondary School 2	0,0 / 0,4	0,6 / 86,8	0,0 / 1,0	0,0 / 0,8
Aigio 1 st High School 1011	0,4 / 10,2	11,2 / 200,0	4,8 / 259,0	0,4 / 8,8
Italy_Instance4	0,0 / 409,0	0,4 / 2666,6	0,0 / 1271,0	0,0 / 321,0
KosovaInstance1	1,2 / 20,4	31,6 / 278,8	2,0 / 75,6	1,2 / 19,6
Kottenpark 2003	2,0 / 10217,2	2,4 / 34766,0	2,8 / 7937,8	2,0 / 10427,0
Kottenpark 2005 A	33,8 / 19059,2	35,0 / 22914,0	27,0 / 10118,0	33,8 / 18834,6
Kottenpark 2008	15,6 / 23962,0	36,8 / 38936,6	16,8 / 33443,6	15,2 / 23756,6
Kottenpark 2009	35,0 / 8543,0	45,4 / 148601,0	31,2 / 8563,0	34,0 / 8649,0
Woodlands 2009	2,0 / 8,2	10,8 / 16,4	2,0 / 14,4	2,0 / 6,8
Spanish school	0,0 / 907,8	0,0 / 3068,0	0,0 / 1126,0	0,0 / 783,8
We stern Greece University 3	0,0 / 5,4	0,0 / 20,4	0,0 / 15,2	0,0 / 5,2
We stern Greece University 4	0,0 / 6,4	0,0 / 30,0	0,0 / 23,6	0,0 / 5,2
$We stern Greece {\it University 5}$	0,0 / 0,0	2,8 / 16,2	1,2 / 3,0	0,0 / 0,0
Média	5,3 / 3531,8	11,7 / 14011,9	5,9 / 3521,7	5,1 / 3513,4

Considerações Finais

- Melhoramos algumas das melhores soluções conhecidas
- Vencedores da Third ITC!!!
 - Com larga vantagem

Considerações Finais

Diferencial da equipe GOAL

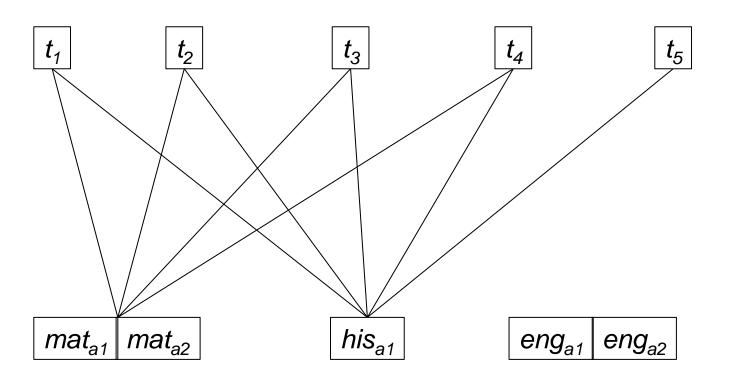
- Predominância da busca local para timetabling
 - Simulated Annealing

Considerações Finais

- Trabalhos futuros
 - Novas estruturas de vizinhança
 - Outras metaheurísticas
 - Configuração de parâmetros
 - Determinar automaticamente as probabilidades da vizinhança
 - Formulações de PI

Agradecimentos

Perguntas



www.phdcomics.com

Método Construtivo

 $\mathsf{mat}_{\mathsf{a1}} \, \mathsf{mat}_{\mathsf{a2}} \, \mathsf{his}_{\mathsf{a1}} \, \mathsf{eng}_{\mathsf{a1}} \, \mathsf{eng}_{\mathsf{a2}} + \mathsf{mat}_{\mathsf{a1}} \, \mathsf{mat}_{\mathsf{a2}} \, \mathsf{eng}_{\mathsf{b1}} \, \mathsf{eng}_{\mathsf{b2}} \, \mathsf{his}_{\mathsf{b1}}$

