
A Matheuristic to the Unrelated Parallel Machine Scheduling Problem

Guilherme Baumgratz Figueiroa
Universidade Federal de Ouro Preto - Departamento de Computação

Campus Universitário Morro do Cruzeiro, s/n, CEP 35400-000, Ouro Preto/MG
guilherme.baumgratz@aluno.ufop.edu.br

George Henrique Godim da Fonseca
Universidade Federal de Ouro Preto - Dep. de Eng. de Computação e Sist. de Informação

Rua 36, Número 115, Loanda, CEP 35931-088, João Monlevade/MG
george@decea.ufop.br

Túlio Ângelo Machado Toffolo
Universidade Federal de Ouro Preto - Departamento de Computação

Campus Universitário Morro do Cruzeiro, s/n, CEP 35400-000, Ouro Preto/MG
tulio@toffolo.com.br

ABSTRACT
This paper presents a Fix-and-Optimize approach for the Unrelated Parallel Machine

Scheduling Problem (UPMSP). In short, the UPMSP consists of assigning jobs to unrelated parallel
machines where different processing times incur for the same job in different machines. Addi-
tionally, a setup time is considered between the execution of jobs in the same machine. Fix-and-
Optimize is a matheuristic that iteratively selects a subset of variables to be fixed to their current
values so that the remaining variables will compose a sub-problem to be optimized by an integer
programming solver. In the proposed approach, each sub-problem consists of a subset of jobs that
are assigned to a subset of machines in the incumbent solution. In the conducted experiments on
benchmark instances, the proposed Fix-and-Optimize algorithm achieved remarkable results. It
outperformed two state-of-the-art exact approaches to the UPMSP and achieved competitive results
when compared to the literature’s best performing heuristic method for this problem.

KEYWORDS. UPMSP, Fix-and-Optimize, Matheuristic

1

1. Introduction
The Machine Scheduling Problem consists in assigning and ordering the execution of a

set of jobs to a set of machines respecting a set of constraints. There are several variations of this
problem. Tasks may be related (there is precedence constraints between tasks) or independent;
machines can be homogeneous (all the machines take the same time to execute the same task) or
heterogeneous; and the objective may be to reduce the makespan (completion time of all jobs),
to reduce the task delay, or to reduce the execution time for each machine. This paper addresses
the Unrelated Parallel Machine Scheduling Problem (UPMSP) with sequence dependent and setup
times, denoted as R|Si jk|Cmax in the α|β |γ notation introduced by [Graham et al., 1979].

The UPMSP is composed of a set of heterogeneous machines M and a set of jobs N. Each
job k has an execution time pik for each machine i. Every job must be assigned to a single machine.
A setup time si jk incurs to initialize a job k after a job j in a machine i. All jobs are available at
time 0 and there is no precedence constraints between jobs. The objective is to assign each job to
a machine in such a way that the completion time of the last job (Cmax) is minimum. As example,
consider the following input data for UPMSP:

M= {m1,m2} N = {n1,n2,n3,n4}

pik =

[n1 n2 n3 n4

m1 2 2 3 4
m2 3 3 5 3

]
sm1 jk =

n1 n2 n3 n4

n1 0 2 1 1
n2 2 0 1 2
n3 3 1 0 3
n4 2 1 2 0

 sm2 jk =

n1 n2 n3 n4

n1 0 3 2 1
n2 2 0 3 2
n3 3 2 0 3
n4 2 2 3 0

Figure 1 presents an example of solution to this UPMSP having Cmax = 8. Active values

of the input data in the solution are highlighted in bold. Blank spaces represent the setup times
between jobs.

Figure 1: Example of solution for the given example of input data for UPMSP.

The UPMSP is present in several industrial applications. For instance, [Kim et al., 2002]
presented an application of the UPMSP in the compound semi conductor of wafer industry. In
this application it is very important to design efficient scheduling plans based on current produc-
tion capacity rather than to purchase more capacity, given the high capital associated with typical
semiconductor production equipment. Another example of industrial application of the UPMSP is
presented by [Arnaout et al., 2009], which consists in the fabrication process of inks and plastics as
an UPMSP. In this application, it is necessary to clean the machine between the end of a job and the
beginning of the next one, therefore incurring setup times.

The UPMSP is a generalization of the Parallel Machine Scheduling Problem, and there-
fore classified as NP-hard [Lenstra et al., 1977]. Due to the practical importance and to the hardness
of solving, several solution approaches have been proposed for this problem. The early computa-
tional studies on the UPMSP started with [Guinet, 1993]’s mathematical programming formulation
to plan the utilisation of textile machines in French industries. [Rabadi et al., 2006] extended the
formulation devised by [Guinet, 1993] and proposed a metaheuristic approach based on the same

2

ideas applied to solve Travelling Salesman problems. [Vallada e Ruiz, 2011] introduced new vari-
ables to the formulation described in [Rabadi et al., 2006] and proposed a Genetic Algorithm to the
problem. Moreover, they proposed a set of challenging instances for the UPMSP, which are still
used as benchmark to evaluate solution approaches. Later, [Avalos-Rosales et al., 2015] presented
some reformulations and valid inequalities that resulted in a very strong formulation to the UPMSP.
[Fanjul-Peyro et al., 2019] proposed reformulations and an exact algorithm for the UPMSP, being
able to obtain solutions for extremely large instances with relative deviations from lower bounds
below 0.8%. More recently, [Santos et al., 2019] developed several Stochastic Local Search algo-
rithms in a multi-neighbourhood structure for the UPMSP and achieved remarkable results even
within very short processing time.

In the present paper, a matheuristic is proposed for the UPMSP. More specifically, a Fix-
and-Optimize (Fix-Opt) approach is presented. Matheuristics are heuristic algorithms made by the
cooperation between metaheuristics and mathematical programming methods [Raidl e Puchinger,
2008] [Maniezzo et al., 2010]. In the Fix-and-Optimize approach, a metaheuristic works at the
master level, controlling low level local search procedures. These local searches are reduced Mixed
Integer Programming (MIP) models, in which a subset of variables is fixed to their current values
in the incumbent solution, and the remaining variables of the model can be freely modified by the
MIP solver [Fonseca et al., 2016].

Fix-and-Optimize approaches are achieving remarkable results for timetabling and schedul-
ing problems in the recent literature. For instance, [Fonseca et al., 2016] proposed a Fix-and-
Optimize-based approach to the Educational Timetabling problem and improved the best known
solution for 15 out of 17 open instances; and [Santos et al., 2016] proposed a Fix-and-Optimize
algorithm to the Nurse Rostering problem that improved the best known solution of the vast major-
ity of tackled open instances in up to 15%. Other successful examples of matheuristic approaches
applied to timetabling and scheduling problems are presented in [Arbaoui et al., 2016] and [Lindahl
et al., 2018].

To the best of the authors’ knowledge, no Fix-and-Optimize approach has been proposed
to the UPMSP yet. Therefore, this paper aims to propose and investigate the effectiveness of a
problem-specific Fix-and-Optimize approach to the UPMSP. Benchmark instances from [Vallada e
Ruiz, 2011] were considered to evaluate the algorithm. The conducted computational experiments
confirmed that Fix-and-Optimize is a strong approach to solve Machine Scheduling problems. It
achieved competitive results when compared to exact and heuristic state-of-the-art solution meth-
ods.

The remainder of this paper is organized as follows. Section 2 presents the adopted Inte-
ger Programming formulation for the problem. Section 3 presents the proposed Fix-and-Optimize
approach for the UPMSP. Section 4 presents the conducted computational experiments and a dis-
cussion of these results. Finally, Section 5 presents some concluding remarks and directions for
future research on the topic.

2. Integer Programming Formulation for UPMSP

This section reproduces the integer programming formulation proposed by [Avalos-Rosales
et al., 2015] to the UPMSP. It is an extension of the formulation developed by [Vallada e Ruiz, 2011]
including some valid inequalities and reformulations. This formulation considerably outperforms
the previously published formulations regarding size of instances and computational time to reach
optimal solutions. Thereby, it was adopted in this work. It takes as input the following sets and
parameters:

3

Input Description
N Set of Jobs.
N0 Set of Jobs including a dummy job (0 index).
M Set of Machines.
pik Execution time for job j on machine k.
si jk Matrix with the setup time for jobs i and j in machine k.
U Valid upper bound for makespan.

and the following variables, along with their domains:

Variables Description
xi jk ∈ {0,1} 1, if job j is scheduled in sequence of job k in machine i; 0, otherwise.
C j ≥ 0 Completion time of job j.
Cmax ≥ 0 Maximum completion time among all jobs (makespan).
yik ∈ {0,1} 1, if job k is assigned to machine i; 0 otherwise.

Dummy jobs, denoted by 0, are needed to represent the beginning and the end of activities for each
machine. Thus, xi0 j represents that j is the first job in machine i, and xik0 represents that k is the last
job in machine i. If a machine i is not used, xi00 equals 1. The problem can be stated as:

min Cmax (1)

s.t. ∑
i∈M

yik = 1 ∀k ∈N (2)

yik = ∑
j∈N0, j 6=k

xi jk ∀k ∈N,∀i ∈M (3)

yi j = ∑
k∈N0,k 6= j

xi jk ∀ j ∈N,∀i ∈M (4)

∑
k∈N

xi0k ≤ 1 ∀i ∈M (5)

Ck−C j +U(1− xi jk)≥ si jk + pik ∀ j ∈N0,∀k ∈N, j 6= k,∀i ∈M (6)

C0 = 0 (7)

C j ≤Cmax ∀ j ∈N (8)

∑
j∈N0, j 6=k

∑
k∈N

si jk× xi jk + ∑
k∈N

pik× yik ≤Cmax ∀i ∈M (9)

Objective (1) minimizes the makespan. Constraints (2) ensure that each job is assigned exactly to
one machine. Constraints (3) establish that every job has exactly one predecessor and both are as-
signed to the same machine. Constraints (4) guarantee that every job has exactly one successor and
both are assigned to the same machine. Constraints (5) ensure that at most one job is scheduled as
the first job on each machine. Constraints (6) are sub-tour elimination constraints which guarantee a
right processing order. Constraints (7) sets the completion time of the dummy job to 0. Constraints
(8) linearize the objective function. Finally, Constraints (9) are valid inequalities which strengthen
the formulation (see [Avalos-Rosales et al., 2015]).
3. Proposed Approach

A Fix-and-Optimize approach is proposed to solve the UPMSP. At first, an initial solution
is generated by a simple greedy algorithm. Then, a Fix-and-Optimize algorithm runs until the

4

available time limit is reached. The next subsections describe these algorithms.

3.1. Generation of Initial Solutions
Although the proposed approach does not rely on good quality initial solutions, they can

speed up the search process because smaller models are created when the incumbent solution has a
short makespan. Therefore, rather than generating a random solution we propose a simple greedy
algorithm to build initial solutions for Fix-and-Optimize. In this constructive procedure, at each
iteration one job is randomly selected. Then, it is assigned to the machine that have the so far
shortest makespan in the position that yields the smallest makespan increase for that machine. The
algorithm finishes when all jobs have been processed.

3.2. Fix-and-Optimize Matheuristic
Given an initial incumbent solution S, the proposed Fix-and-Optimize (Fix-Opt) algorithm

selects, at each iteration, a set of jobs N′ ⊆N to have their assignment and ordering optimized by a
mathematical programming solver. The remainder of the jobs N−N′ are fixed to the same machine
and execution order as in solution S. In fact, rather than directly selecting jobs to be optimized, we
select a machine and then its jobs to be optimized. This is done because it gives more and better
options for the solver to reorder and reassign the jobs. The makespan machine always have its jobs
selected to be optimized since it is the one that can directly improve the objective value of a solution.
To allow exchanges in job-machine assignment, at least one additional machine is selected. Note
that additional machines are selected according to a roulette wheel which prioritizes machines with
smallest makespan:

pi = 1−CM
max−CM

i

CM
max

,∀i ∈M (10)

where CM
i represents the makespan of machine i. Note that, for each machine, pi ∈ [0,1]. These

values are later normalized in such a way that the sum of the odds for all machines is 1.
The number of jobs to be freed (n) plays an important role in the proposed Fix-and-

Optimize approach since it guides the size of the sub-problems. Too small values for n leads to a
poor exploration of the search space, whilst too large values for n leads to excessively hard sub-
problems that cannot be solved in reasonable time. Moreover, different values for this parameter
can be more interesting at specific stages of the search. For example, when you already have a high
quality solution it is less likely that a small n will lead to a better solution. Therefore, a large n
might be more effective in such a case. To cope with that, we propose an auto-adaptive procedure
that automatically adjusts the size of the sub-problem (n) throughout the optimization process.

Another important feature of the proposed approach is that it allows a subset of jobs of
the last selected machine j ∈M to be released when the selection of all jobs from j surpasses
sub-problem maximum size n. This is an important feature because, often, selecting the jobs of m
machines to be optimized leads to a way too easy sub-problem, while the release of jobs of m+ 1
machines leads to a way too hard sub-problem. In such a case, jobs are selected randomly from
machine j to be freed until n jobs in total are selected.

Figure 2 presents an example of the proposed solution approach for a small problem.
Figure 2(a) represents the current solution S. Suppose n = 5 jobs to be freed at this iteration.
Machine m2 is the makespan machine, therefore its jobs must be freed. Yet suppose that machine
m4 was chosen in sequence. The sum of jobs from machines m2 and m4 is still less than n, thereby a
third machine, say m3, is selected. Now considering m2, m4 and m3 we have 6 jobs to release. In this
case, only one job from m3 (say n1) will be released. Figure 2(b) presents the correspondent sub-
problem, where diagonally dashed cells represent fixed jobs. Figure 2(c) presents the new solution

5

obtained after a MIP solver runs on the sub-problem of Figure 2(b). In this new solution, job n1 has
been moved to machine m4, job n12 has been moved to m2, and job n7 has been moved to m3, after
n10. Note that n10 is fixed at machine m3 but can be reordered by the solver if needed.

(a) Current solution S.

(b) Sub-problem fixing machines m1, m5, m6 and job n10 of m3.

(c) Optimal solution S′ for sub-problem of Figure 2(b).

Figure 2: Example of an iteration of the proposed Fix-and-Optimize approach.

The incumbent solution for the next iteration has a special characteristic: there is a tie
among the makespan machines m1, m2, m3, m5 e m6. On the one hand, if we leave any of these
machines fixed, the objective value cannot be improved. On the other hand, if we release all of
them (for a bigger problem) the sub-problem may be too hard to be solved. Observe that even if the
objective value cannot be improved in this iteration, a more promising solution can be obtained if
the makespan of one (or more) of the machines is reduced, making it easier to improve the objective
value in the next iterations. With that in mind, we load, at each iteration, only the sub-problem to

6

be solved in the solver rather than loading all the machines (and their makespans).
Algorithm 1 summarizes the proposed Fix-and-Optimize approach. It takes as input a

problem instance P containing the input data; an initial solution S; an initial number of jobs to be
freed; an execution time-limit (in seconds); and a time-limit (in seconds) to solve each sub-problem.
As output, it provides the best solution found S. To simplify, notation Si represents the set of jobs
assigned to machine i in solution S.

Algorithm 1: Fix-Opt: Proposed Fix-and-Optimize approach to the UPMSP.
Input: (i) Problem instance P (N, M, pik, si jk); (ii) Initial solution S; (iii) Execution

timelimit; (iv) Sub-problem size n; (v) Sub-problem time limit t.
Output: (i) Updated solution S.

1 while timelimit not reached do
2 imax←Makespan machine in S;
3 M′←{imax}; . Machines selected to compose sub-problem P′
4 N′←{Simax}; . Jobs selected to compose sub-problem P′
5 while |N′| ≤ n do . Run until n jobs are selected to the sub-problem P′
6 i← select a machine from M−M′ according to a roulette wheel (Eq. 10);
7 M′←M′∪{i}; . Adds selected machine i to M′

8 if |N′|+ |Si| ≤ n then
9 N′←N′∪{Si}; . Add the jobs from selected machine i to N′

10 else
11 while |N′| ≤ n do
12 j← select a random job from those assigned to machine i;
13 N′←N′∪{ j}; . Add selected job j to N′

14 M← Create MIP model for sub-problem P′(N′,M′, pik,si jk);
15 Load solution S into model M;
16 (S,status)← Solve M with a time limit t;
17 if status is Optimal then
18 n← dn×1.2e; . Increase sub-problem size by 20%

19 else
20 n← bn×0.8c; . Decrease sub-problem size by 20%

21 return S;

Line 1 is the main loop that runs until the given timelimit is reached. Lines 2 and 3 select
the makespan machine and adds it to the set of machines M′ to be optimized in the sub-problem
P′. Line 4 adds the jobs from makespan machine imax to the set of jobs N′ to be optimized in the
sub-problem P′. Loop at lines 5 to 14 is executed until n jobs are selected to compose the sub-
problem. Line 6 selects another machine i not selected yet by a roulette wheel (Eq. 10) and line 7
adds machine i to set M′. If the addition of the jobs from machine i does not surpass the number of
jobs to be selected n (line 8), all the jobs assigned to machine i will be selected (line 9); otherwise,
a loop will randomly select jobs from i until n jobs are selected (lines 11 to 14). Line 15 creates a
mixed integer programming (MIP) model M for sub-problem P′ and line 16 loads solution S into
model M. Line 17 calls an IP solver with default parameters to solve M within a time limit of t
seconds. Lines 18 to 21 adjust the sub-problem size. If the model M is solved to optimality within

7

t seconds, then sub-problem size n is increased by 20% (line 19); otherwise, it is decreased by 20%
(line 21). Finally, line 22 returns updated solution S.
4. Computational Experiments

Experiments were performed on a Dell G7-7588 A30P notebook, Intel Core i7-8750H
(cache 9M, 2.20 GHz up to 4,10 GHz) processor, 16 GB RAM memory under Ubuntu 20.04 LTS
operational system. The software was coded in Python 3.8 using Python-MIP 1.11.0. State-of-the-
art solver Gurobi 9.0, with default parameter setting was used to solve the MIP models. In the spirit
of reproducible science, the source code, problem instances and solution files are available online1.
4.1. Instance Characterization

We adopted the instances proposed by Vallada and Ruiz [Vallada e Ruiz, 2011] to per-
form computational experiments. Only the set of large instances was considered because the small
ones are not challenging for state-of-the-art solvers. The considered instances have a variate num-
ber of jobs to be scheduled |N| = {50,100,150,200,250} and, for each number of jobs, datasets
having |M| = {10,15,20,25,30} available machines. For each combination of |N| and |M|, ten
instances were generated with random values for setup and preparation times. Due to time limi-
tations to perform experiments, we considered only one randomly selected instance for each |N| -
|M| combination, yielding 25 problem instances to be solved.
4.2. Parameter Calibration

The proposed approach has two parameters to calibrate: the initial size of the sub-problems
n and the time limit for each sub-problem t. We believe the latter has a larger impact on the re-
sults because the former is auto-adapted throughout the optimization process. Thus, n = 33 was
empirically defined and t was adjusted by the iRace package [López-Ibáñez et al., 2016]. Interval
n= [10,120] and 500 runs of budget were considered for calibration. To avoid over-fitting in param-
eter selection, different instances were chosen to calibrate the solver. Finally, t = 22 was suggested
by iRace and adopted in the conducted experiments.
4.3. Results and Discussion

Table 1 compares the obtained results by the proposed approach (Fix-Opt) with three state-
of-the-art approaches in literature. IP stands for the Integer Programming formulation proposed by
Avalós-Rosales et al. (2015) [Avalos-Rosales et al., 2015] and adopted to solve the sub-problems;
MPA stands for the Mathematical programming algorithm proposed by Fanjul-Peyro et al. (2019)
[Fanjul-Peyro et al., 2019]; and SLS stands for the Stochastic Local Search proposed by Santos
et al. (2019) [Santos et al., 2019]. To provide a fair comparison, all solvers were executed in the
same machine with a 3,600s time limit. To compute the results, exact methods (IP and MPA) were
executed once for each instance, whilst heuristic approaches (SLS and Fix-Opt) were executed five
times. In the former case the obtained bounds are reported, whilst in later case the best and the
average solution found are reported. For each instance the best solution found is highlighted in
bold.

From the analysis of Table 1, we conclude that the proposed Fix-Opt approach is consider-
ably better than its stand-alone integer programming model (IP) and the mathematical programming
algorithm (MPA) to provide high quality solutions. When compared to SLS, there are instances in
which Fix-Opt is better and others where SLS is better. Overall, the average of the best solutions
found by these heuristic solvers are really close. This is an interesting result since SLS is a really
strong solver for the UPMSP that generated 901 new best know solutions for the 1,000 benchmark
instances proposed by [Vallada e Ruiz, 2011]. Another interesting observation is that MPA consid-
erably outperformed [Avalos-Rosales et al., 2015]’s IP model, which was believed to be the best
exact approach for the UPMSP instances considered so far.

1https://github.com/Baumgratz/math-heuristic_to_upmsp

8

Instance
IP [Avalos-Rosales

et al., 2015]
MPA [Fanjul-Peyro

et al., 2019]
SLS [Santos et al.,

2019]
Fix-Opt

LB Best (UB) LB Best (UB) Best Avg. Best Avg.
I_50_10_S_1-124_5 100 111 102 143 111 113.00 110 112.00
I_50_15_S_1-99_4 51 67 51 90 58 58.00 58 58.80
I_50_20_S_1-49_5 29 29 28 31 29 29.80 29 29.00
I_50_25_S_1-9_4 20 20 20 20 20 20.00 20 20.00
I_50_30_S_1-9_4 16 16 16 16 16 16.00 16 16.00
I_100_10_S_1-124_5 186 222 186 235 203 206.40 202 205.80
I_100_15_S_1-49_4 68 83 69 83 76 76.60 77 78.80
I_100_20_S_1-124_6 68 82 63 108 74 75.20 74 77.20
I_100_25_S_1-124_8 42 73 41 85 52 53.20 55 55.40
I_100_30_S_1-9_8 21 26 21 24 23 23.00 23 23.00
I_150_10_S_1-99_9 223 269 224 247 246 246.60 235 236.80
I_150_15_S_1-49_6 100 139 100 120 110 110.40 110 112.00
I_150_20_S_1-9_1 61 69 61 65 63 63.80 64 65.00
I_150_25_S_1-124_7 68 278 67 138 82 83.20 89 91.40
I_150_30_S_1-9_1 28 35 28 31 30 30.20 31 31.00
I_200_10_S_1-49_6 238 259 239 245 252 253.00 246 246.00
I_200_15_S_1-99_1 158 248 158 192 180 181.00 175 176.40
I_200_20_S_1-124_2 114 166 114 170 134 137.60 141 143.20
I_200_25_S_1-49_5 67 164 67 90 76 76.80 80 81.20
I_200_30_S_1-124_2 62 150 62 118 76 76.40 85 90.40
I_250_10_S_1-124_9 352 548 351 373 395 400.40 369 371.60
I_250_15_S_1-9_8 125 145 125 129 129 129.00 128 129.00
I_250_20_S_1-49_9 105 147 105 119 117 118.00 117 118.80
I_250_25_S_1-124_8 103 221 103 154 124 124.80 133 136.00
I_250_30_S_1-49_1 58 19452 58 79 67 67.60 72 73.20
Average 98.52 920.76 98.36 124.2 109.72 110.8 109.56 111.12

Table 1: Comparison of obtained results from the proposed approach (Fix-Opt) and three state-of-the-art
solvers (IP, MPA, and SLS).

5. Concluding Remarks
This paper presented a Fix-and-Optimize algorithm for the UPMSP. In the proposed ap-

proach each sub-problem consists of optimizing the assignment and processing order of a subset
of the jobs N′ ⊆ N that are assigned to a subset of machines M′ ⊆M in the incumbent solution.
Computational experiments shown that the proposed approach outperforms two state-of-the-art ex-
act approaches and achieve competitive results when compared to the literature’s best performing
heuristic method for the problem. An interesting feature of the proposed approach is that it is based
on a model so it can be easily extended to other variants of machine scheduling problems, while
purely heuristic methods are often tailored to the problem’s specific features.

It should be noticed that there is still room for improvement in the proposed Fix-and-
Optimize approach. As directions for future research we suggest: (i) implementing the MPA to
solve the sub-problems instead of [Avalos-Rosales et al., 2015]’s formulation; (ii) evaluating the
use of SLS as method to generate initial solutions to the proposed Fix-and-Optimize algorithm;
and, finally, (iii) performing systematic experiments with more instances and larger time limits.

References
Arbaoui, T., Boufflet, J.-P., e Moukrim, A. (2016). A matheuristic for exam timetabling.

IFAC-PapersOnLine, 49(12):1289 – 1294. ISSN 2405-8963. URL http://www.
sciencedirect.com/science/article/pii/S2405896316309776. 8th IFAC
Conference on Manufacturing Modelling, Management and Control MIM 2016.

9

Arnaout, J.-P., Rabadi, G., e Musa, R. (2009). A two-stage ant colony optimization algorithm to
minimize the makespan on unrelated parallel machines with sequence-dependent setup times.
Journal of Intelligent Manufacturing, 21:693–701.

Avalos-Rosales, O., Angel-Bello, F., e Alvarez, A. (2015). Efficient metaheuristic algorithm and re-
formulations for the unrelated parallel machine scheduling problem with sequence and machine-
dependent setup times. The International Journal of Advanced Manufacturing Technology, 76
(9-12):1705–1718.

Fanjul-Peyro, L., Ruiz, R., e Perea, F. (2019). Reformulations and an exact algorithm for unrelated
parallel machine scheduling problems with setup times. Computers & Operations Research, 101:
173–182.

Fonseca, G. H., Santos, H. G., e Carrano, E. G. (2016). Integrating matheuristics and
metaheuristics for timetabling. Computers & Operations Research, 74:108 – 117. ISSN
0305-0548. URL http://www.sciencedirect.com/science/article/pii/
S0305054816300879.

Graham, R., Lawler, E., Lenstra, J., e Kan, A. (1979). Optimization and approximation in
deterministic sequencing and scheduling: a survey. In Hammer, P., Johnson, E., e Korte,
B., editors, Discrete Optimization II, volume 5 of Annals of Discrete Mathematics, p. 287
– 326. Elsevier. URL http://www.sciencedirect.com/science/article/pii/
S016750600870356X.

Guinet, A. (1993). Scheduling sequence-dependent jobs on identical parallel machines to minimize
completion time criteria. International Journal of Production Research, 31(7):1579–1594. URL
https://doi.org/10.1080/00207549308956810.

Kim, D.-W., Kim, K.-H., Jang, W., e Chen, F. (2002). Unrelated parallel machine scheduling with
setup times using simulated annealing. Robotics and Computer-Integrated Manufacturing, 18
(3):223 – 231. ISSN 0736-5845. URL http://www.sciencedirect.com/science/
article/pii/S0736584502000133. 11th International Conference on Flexible Automa-
tion and Intelligent Manufacturing.

Lenstra, J. K., Kan, A. R., e Brucker, P. (1977). Complexity of machine scheduling problems. In
Annals of discrete mathematics, volume 1, p. 343–362. Elsevier.

Lindahl, M., Sørensen, M., e Stidsen, T. R. (2018). A fix-and-optimize matheuristic for university
timetabling. Journal of Heuristics, 24(4):645–665.

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., e Stützle, T. (2016). The
irace package: Iterated racing for automatic algorithm configuration. Operations Research
Perspectives, 3:43 – 58. ISSN 2214-7160. URL http://www.sciencedirect.com/
science/article/pii/S2214716015300270.

Maniezzo, V., Stützle, T., e Voß, S. (2010). Matheuristics: Hybridizing Metaheuristics and Mathe-
matical Programming. Springer, 1st edition.

Rabadi, G., Moraga, R. J., e Al-Salem, A. (2006). Heuristics for the unrelated parallel machine
scheduling problem with setup times. Journal of Intelligent Manufacturing, 17(1):85–97.

10

Raidl, G. e Puchinger, J. (2008). Combining (integer) linear programming techniques and meta-
heuristics for combinatorial optimization. In Blum, C., Aguilera, M. J. B., Roli, A., e Sampels,
M., editors, Hybrid Metaheuristics, volume 114 of Studies in Computational Intelligence, p. 31–
62. Springer Berlin Heidelberg. ISBN 978-3-540-78294-0.

Santos, H. G., Toffolo, T. A., Gomes, R. A., e Ribas, S. (2016). Integer programming techniques
for the nurse rostering problem. Annals of Operations Research, 239(1):225–251.

Santos, H. G., Toffolo, T. A., Silva, C. L., e Vanden Berghe, G. (2019). Analysis of stochastic local
search methods for the unrelated parallel machine scheduling problem. International Transac-
tions in Operational Research, 26(2):707–724.

Vallada, E. e Ruiz, R. (2011). A genetic algorithm for the unrelated parallel machine scheduling
problem with sequence dependent setup times. European Journal of Operational Research, 211
(3):612–622.

11

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

