
Universidade Federal de Minas Gerais

Graduate Program in Electrical Engineering

Formulations and Algorithms for

Timetabling

George Henrique Godim da Fonseca

Thesis submitted to the examination board designated

by the Graduate Program in Electrical Engineering colle-

giate as partial requirement to obtain a Ph.D. in Electri-

cal Engineering from the Universidade Federal de Minas

Gerais.

Advisor: Prof. Eduardo G. Carrano, Ph.D.

Co-advisor: Prof. Haroldo G. Santos, Ph.D.

Belo Horizonte, April 2017

Resumo

O Problema de Programação de Horários Educacionais consiste em alocar horários e

recursos a eventos respeitando diversas restrições. Além de sua importância prática, esse

problema é classi�cado como NP-Difícil na maioria de suas formulações. Essa tese con-

sidera o formato XHSTT devido à sua capacidade de lidar com diversas particularidades

da programação de horários e à sua relevância na literatura recente. O principal obje-

tivo desse trabalho é desenvolver novas formulações e algoritmos para esse problema.

A respeito de formulações, uma formulação alternativa e uma abordagem de geração

de colunas foram propostas. Na área de algoritmos, duas metaheurísticas e algumas

variações delas foram desenvolvidas. Uma heurística matemática de Fixa-e-Otimiza

especí�ca para o problema também foi proposta, junto com uma variação nomeada

Fixa-e-Otimiza Orientado-a-Defeitos. Os experimentos computacionais demonstraram

que a formulação alternativa é provê limites inferiores mais fortes que a original e que

acelera o processo de busca por soluções inteiras. A abordagem de geração de colunas

produziu limites inferiores ainda mais fortes. Resolvedores baseados em Fixa-e-Otimiza

alcançaram resultados notáveis, sendo agora, por uma larga margem, os melhores re-

solvedores para programação de horários educacionais em XHSTT. A variação Fixa-e-

Otimiza Orientado-a-Defeitos apresentou resultados promissores, superando sua versão

original e auxiliando na busca de novas melhores soluções conhecidas. As metaheurísti-

cas desenvolvidas também foram capazes de encontrar boas soluções para o problema.

Por �m, os algoritmos e formulações propostos nessa tese resolveram seis instâncias em

aberto e geraram quinze novas melhores soluções conhecidas de dezesseis instâncias e

cinco novos limites inferiores.

i

Abstract

The Educational Timetabling Problem consists in assigning timeslots and resources

to events respecting a set of constraints. Beyond its practical importance, this pro-

blem is classi�ed as NP-Hard in most of its formulations, attracting the interest of

Computer Science and Operations Research scienti�c communities. This thesis consi-

ders the XHSTT format due to it is capability of covering several timetabling features

and its relevance in recent literature. Moreover, this format was adopted in the last

timetabling competition. The main goal of this work is to develop new formulations

and algorithms to the problem. Regarding formulations, an alternative formulation and

a Dantzig-Wolfe column generation approach were proposed. In the �eld of algorithms,

two metaheuristics and some variants of them were developed. A problem-speci�c Fix-

and-Optimize matheuristic approach was also proposed, along with a variation called

Defect-Oriented Fix-and-Optimize. The computational experiments demonstrated that

the proposed alternative formulation provides stronger lower bounds than the original

one and speeds up the search for integer solutions. The column generation approach

provided even stronger lower bounds. The Fix-and-Optimize based solvers achieved

remarkable results being now, by a large margin, the best overall solvers for XHSTT

educational timetabling. Defect-Oriented Fix-and-Optimize have shown promising re-

sults, overcoming its original version and helping to �nd new best known solutions.

Metaheuristics and most of their variants were also able to �nd good solutions to the

problem. Finally, the algorithms and formulations proposed in this thesis provided �f-

teen new best known solutions out of sixteen open instances and �ve new lower bounds.

Six instances were closed in this work.

ii

Acknowledgements

First of all, I would like to thank God for giving me strength and health to work on

this P.hD. thesis.

I would like to thank my advisor, Eduardo G. Carrano, for his excellent guidance

throughout this project, for his attention, and for his availability to support the devel-

opment of this work. A special thanks goes to my co-advisor Haroldo G. Santos, for

our productive meetings, for his amazing ideas, and also for his support to this project.

Great thanks to my department colleagues from DECSI/UFOP for their incentive

and for letting me fully dedicate a year and a half to this thesis. Thanks goes also

to my PPGEE/UFMG colleagues and sta� for their support and for the good time

spent together. Finally, thanks to the Brazilian research agency CNPq for the �nancial

support to my exchange research stay in Denmark.

Thanks goes to all the fellows I met at DTU Management Engineering, specially to

Thomas R.S. Stidsen for receiving me with open arms at DTU and for his insights to

this work, and to Niels-Christian F. Bagger for his friendship and fruitful discussions.

Really thank you for making my stay in Denmark simply awesome!

Finally, thanks goes to my family, friends, and to everyone else who supported me

somehow in this project!

iii

Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Literature Review . 3
1.3 Document Structure . 8

2 The Timetabling Problem 10
2.1 Times . 10
2.2 Resources . 10
2.3 Events . 11
2.4 Constraints . 11
2.5 Integer Programming Formulation . 14

2.5.1 Variables . 15
2.5.2 Constraints . 16
2.5.3 Objective Function . 26

3 Formulations 29
3.1 Alternative Formulation . 29

3.1.1 Generation of Sub-events . 30
3.1.2 Alternative Formulation for Link Events 30
3.1.3 Alternative Formulation for Avoid Clashes 32
3.1.4 Alternative Formulation to Link X and Y (LXY) 32
3.1.5 Cluster Busy Times Cut (CBT) 32
3.1.6 Link Y and Q Cut (LYQ) . 33
3.1.7 Number of Busy Times Cut (NBT) 33
3.1.8 Multicomodity Flow Reformulation (MCF) 34

3.2 Column Generation . 38
3.3 Cut-and-Solve . 42

4 Algorithms 44
4.1 Constructive Algorithm . 44
4.2 Metaheuristics . 46

4.2.1 Neighbourhood Structure . 46
4.2.2 Variable Neighbourhood Search 50

iv

CONTENTS v

4.2.3 Late Acceptance Hill-Climbing 53
4.3 Matheuristics . 57

4.3.1 Fix-and-Optimize . 57
4.3.2 Defect-Oriented Fix-and-Optimize 60
4.3.3 Local Branching . 62

4.4 Hybrid Solver . 66

5 Computational Experiments 68
5.1 Computational Environment . 69
5.2 Instance Characterization . 69

5.2.1 ITC2011 Hidden Instances . 69
5.2.2 XHSTT-2014 Instances . 72

5.3 Formulation Results . 74
5.3.1 Comparison between F1 and F2 74
5.3.2 Column Generation Results . 82
5.3.3 Cut-and-Solve Results . 83

5.4 Algorithm Results . 85
5.4.1 VNS Results . 85
5.4.2 LAHC Results . 86
5.4.3 Matheuristic Results . 87

5.5 Overall Comparison of Solvers . 89
5.6 Improving Best Known Bounds . 94

6 Concluding Remarks 97
6.1 Conclusions . 97
6.2 Contributions . 98
6.3 Future Work . 99
6.4 Publications . 100

References 102

List of Figures

3.1 Example of network for a resource in a toy instance consisting of three
days, having four times each (adapted from [27]). 35

3.2 Example of schedule for one resource r (adapted from [27]). 36
3.3 Forbidden paths in the network (adapted from [27]). 37

4.1 Example of Kempe Move. 50
4.2 Example of graph of resources for the Defect-Oriented Fix-and-Optimize

algorithm. 61
4.3 Scheme of the proposed Hybrid Solver of metaheuristic and matheuristic. 67

5.1 Normalized cumulative lower bound improvement in the linear relaxation
achieved by each cut. 76

5.2 Comparison of the number of variables of F1 and F2 for each instance
in XHSTT 2011 hidden. 77

5.3 Comparison of the number of constraints of F1 and F2 for each instance
in XHSTT 2011 hidden. 78

5.4 Comparison of the number of non-zeros of F1 and F2 for each instance
in XHSTT 2011 hidden. 79

5.5 Convergence chart of SVNS-DO-FixOpt, SVNS, SA-SF-LAHC, and IP
F2 for instance BR-SA-00. 91

5.6 Overall comparison of rankings of solvers over the XHSTT-ITC2011-
hidden archive. 93

vi

List of Tables

3.1 Example of pattern representation in the proposed Dantzig-Wolfe de-
composition. 39

4.1 Example of Event Swap neighbourhood. 47
4.2 Example of Event Move neighbourhood. 47
4.3 Example of Event Block Swap neighbourhood. 48
4.4 Example of Resource Swap neighbourhood. 48
4.5 Example of Resource Move neighbourhood. 49
4.6 Example of one iteration of the proposed Fix-and-Optimize approach. . 60

5.1 Features of XHSTT-ITC2011-hidden archive and adopted abbreviations. 70
5.2 Constraints in XHSTT-ITC2011-hidden instances. 71
5.3 Features of XHSTT-2014 archive . 72
5.4 Presence of constraints in XHSTT-2014 instances 73
5.5 E�ectiveness of each cut over XHSTT-ITC2011-hidden archive. 75
5.6 Comparison between linear relaxations of F1 and F2. 80
5.7 Integer Programming results for formulations F1 and F2 within 1 hour

time limit. 81
5.8 Results of the proposed Column Generation approach for educational

timetabling. 83
5.9 Comparison between Cut-and-Solve approach and Integer Programming

formulation F2 within 1 hour time limit. 84
5.10 Results of VNS and variants. 86
5.11 Results of LAHC and variants. 87
5.12 Results of matheurisitc based algorithms. 88
5.13 Comparison of di�erent solution techniques proposed in this work. . . . 90
5.14 Comparison of SVNS-DO-FixOpt with state-of-art approaches for edu-

cational timetabling. 92
5.15 New best known bounds obtained in this thesis for XHSTT-2014 archive. 96

vii

List of Acronyms

ALNS: Adaptive Large Neighborhood Search

BKS: Best Know Solution

CBT: Cluster Busy Times Cut

DO-FixOpt: Defect-Oriented Fix-and-Optimize

EBS: Event Block Swap

EM: Event Move

ES: Event Swap

FixOpt: Fix-and-Optimize

GD: Great Deluge

GUI: Graphical User Interface

ITC: International Timetabling Competition

IP: Integer Programming

KHE: Kingston High School Timetabling Engine

KM: Kempe Move

LAHC: Late Acceptance Hill-Climbing

LNS: Large Neighbourhood Search

LXY: Link X and Y Cut

LYQ: Link Y and Q Cut

MaxSAT: Maximum Boolean Satis�ability

MCF: Multi-commodity Flow

viii

LIST OF TABLES ix

MIP: Mixed Integer Programming

MP: Mathematical Programming

NBT: Number of Busy Times Cut

RNA: Random Non-Ascendent

RPGD: Random Permutation Great Deluge

RVNS: Reduced Variable Neighborhood Search

RM: Resource Move

RS: Resource Swap

RPGD: Reduced Variable Neighborhood Search

SA: Simulated Annealing

SA-SF-LAHC: Simulated Annealing - Stagnation Free Late Acceptance Hill-Climbing

SAT: Boolean Satis�ability

SF-LAHC: Stagnation Free Late Acceptance Hill-Climbing

SVND: Sequential Variable Neighborhood Descent

SVNS: Skewed Variable Neighborhood Search

SVNS-DO-FixOpt: Skewed Variable Neighborhood Search - Defect-Oriented Fix-
and-Optimize

SVNS-FixOpt: Skewed Variable Neighborhood Search - Fix-and-Optimize

VNS: Variable Neighborhood Search

XHSTT: eXtended Markup Language for High School Timetabling

Chapter 1

Introduction

Educational timetabling is a problem faced by many institutions around the world.

It consists in assigning timeslots and resources to events taking into account several

constraints. The schedule, which is generally made for a week, is repeated until the

end of the class period. Under the umbrella of educational timetabling lie high school

timetabling [60], university course timetabling [8], examination timetabling [64], and

student sectioning [47]. Some usual constraints in these problems are to respect the

availability of teachers, to respect the limit of lessons of the same class in a day, and to

avoid idle times between activities.

The automated construction of educational schedules has been the subject of many

research works in Computer Science and Operations Research. Surveys [68] and [60]

present some reasons for this interest:

complexity: to �nd a timetable that satis�es the interests of all involved elements is

a hard task; moreover, even the construction of a feasible timetable is a di�cult

problem;

practical importance: a good timetable can improve the students' performance, the

sta� satisfaction and it allows the institution to be more e�cient in resource

management;

theoretical importance: several formulations of the problem are classi�ed as NP-

Hard [29].

1

CHAPTER 1. INTRODUCTION 2

This thesis considers the eXtended Markup Language for High School Timetabling

(XHSTT) format [62] for modelling the problem. This format was chosen due its capa-

city of covering several timetabling features and due to its relevance in the recent liter-

ature, being adopted by the last international timetabling competition [61]. Although

it was initially proposed for High School Timetabling, it can be also applied to univer-

sities and other types of educational institutions, such as shown in [33]. Indeed, several

XHSTT problem sets found in the literature contain university timetabling, student

sectioning, and other instances that are not necessarily from high school institutions.

Finally, several instances are available in this format and the research community keeps

track of the best known bounds for them.

1.1 Objectives

Despite the recent advances in the use of exact methods for timetabling, these

techniques are still incipient for the XHSTT model. The model was proposed in 2010,

but the �rst Integer Programming (IP) formulation was proposed only in 2014, by

Kristiansen et al. [48]. In the �eld of heuristics, researchers believe that there is still

room for improvement in their approaches [35]. With the proposal of the IP model,

matheuristics [50] arise as candidate methods for solving the problem. With these

techniques in mind, the main objective of this thesis is to develop, to improve, and to

evaluate formulations and algorithms for educational timetabling. As speci�c objectives

and contributions of this thesis, it should be mentioned:

• to evaluate the e�ciency of metaheuristics applied to this problem;

• to build problem-speci�c matheuristics for educational timetabling;

• to propose alternative mathematical programming formulations for this problem;

• to develop a column generation decomposition for educational timetabling;

CHAPTER 1. INTRODUCTION 3

• to improve the best known solutions and lower bounds for the open instances of

this problem in literature.

1.2 Literature Review

Computational study of educational timetabling has begun in 1963, by Gotlieb [37].

Since this initial work, a large number of approaches were applied to the problem. These

approaches range from simple heuristics to complex techniques, such as metaheuristics,

hyper-heuristics, and mixed integer programming formulations. Three international

competitions on the theme were also organized.

Most early techniques were based on the simulation of human strategies for solving

the problem. Such techniques are often refereed to as direct heuristics based on a

successive augmentation. In this kind of algorithm, starting by the most di�cult lecture,

a timetable is iteratively built lecture by lecture, until all lectures are scheduled [69].

Reductions of the problem to the Graph Colouring Problem [55] and to Network Flow

[58] were also explored. However, those techniques can only handle a few problem

constraint types.

Nowadays, the most commonly techniques employed are metaheuristics. A meta-

heuristic is an algorithm that adopts any mechanism to escape from local optima in the

optimization process. Any metaheuristic needs an initial solution as starting point, or

a set of initial solutions, in the case of population-based methods. Usually, the initial

solution is built through graph algorithms, direct heuristics, or by the combination of

these techniques. Among the most used metaheuristics for timetabling it is possible to

highlight: Simulated Annealing [1, 17], Greedy Randomized Adaptive Search [36, 53],

Tabu Search [23, 73], Variable Neighborhood Search [16, 56], Iterated Local Search

[6, 25], and Evolutionary Strategies [15, 28].

Although metaheuristics frequently achieve reasonable solutions in short time, they

do not ensure optimality. Moreover, these methods cannot even provide optimality

CHAPTER 1. INTRODUCTION 4

gaps. In this sense, exact techniques, such as Constraint Programming and Mixed Inte-

ger Programming, take an important role. They can provide lower bounds to evaluate

more precisely the quality of a solution and even reach good or optimal solutions. How-

ever, to achieve good/ optimal solutions using exact methods is possible only when the

timetabling problem is too small or when advanced techniques of formulation are ap-

plied, such as Column Generation [7], Cuts [40], and Decomposition [19]. For example,

(i) Achá and Nieuwenhuis [4] improved several best known solutions for instances from

the Second International Timetabling Competition using a boolean satis�abily formu-

lation (SAT) in a framework that maximizes the amount of clauses satis�ed (MaxSAT);

(ii) Santos et al. [67] presented a column and cut generation algorithm based on an Inte-

ger Programming formulation that was able to �nd optimal solutions for some Brazilian

school timetabling instances, and; (iii) Avella and Vasilev [5] studied the polyhedral

structure of the University Course Timetabling problem to provide e�ective classes of

cutting planes. As result they found, within �fteen minutes, the optimal solution to

the four instances considered in their work, whereas the compact formulation could not

�nd any feasible solution within two hours.

Although educational timetabling problems share some core features, they present

several particularities from country to country. Some examples are given below:

Australia : Australian educational institutions have short scholar days and high uti-

lization of teachers in these days. Therefore it is highly desirable a compact

schedule for teachers. Specialized rooms, such as science and computing labo-

ratories are highly demanded. Constraints related to the teachers' workload are

also critical [1, 42].

Brazil : lectures are weekly distributed in Brazilian schools and universities. Teach-

ers often work in more than one institution, therefore constraints related to the

availability of them are crucial. Constraints related to the duration of lectures

are important as well [66, 73].

CHAPTER 1. INTRODUCTION 5

England : English schools have high variation among the duration of lectures. They

might be cycled or distributed over two weeks. Additionally, students can enroll

in elective subjects of their preference. Constraints related to the duration and

splitting of events are important in their instances [78].

Finland : in Finn educational institutions, students attend to lectures from their

base group and should also attend some elective lectures. Usually teachers and

rooms are pre-assigned according to the compatibility with the events. Compact

schedules to the students are mandatory and idle times between lectures are highly

undesirable [57].

Greece Greek high schools are divided in two parts: lyceum (7th to 9th grades) and

gymnasium (10th to 12th grades). Students must choose between three distinct

specializations, each one with a di�erent set of lectures. Lectures are distributed in

�ve days, having seven times each. This schedule is weekly repeated. Constraints

related to the duration of the lectures are critical. Idle times between teacher's

lectures are undesirable [9, 75].

Netherlands : in Dutch schools, the schedule is weekly repeated and it may last six

weeks, one trimester, one semester, or the whole year. Usually teachers are pre-

assigned to the lectures and work contracts allow one or two days o�. Therefore,

avoiding unavailable times for teachers is essential. Students gifted for sports or

dance are released from the �rst or the last lecture on some days [22, 77].

Due to this variety of timetabling models and the di�culty of establishing fair

comparisons among solution approaches, three International Timetabling Competitions

(ITC) were organized:

ITC2002 : the �rst competition occurred in 2002/03 and it was focused on the Uni-

versity Course Timetabling Problem. The best ranked solver in the �rst ITC em-

ployed a 3-phase approach: �rst, a feasible timetable is constructed using graph

CHAPTER 1. INTRODUCTION 6

colouring and maximum matching; then, Simulated Annealing (SA) is used to or-

der the timeslots built, and; �nally, SA is used to swap individual events between

timeslots to improve the solution quality [46].

ITC2007 : the second competition occurred in 2007/08 and it was divided into three

tracks (Examination Timetabling [51], Post Enrolment based Course Timetabling

[49] and Curriculum based Course Timetabling [25]). The overall best ranked

solver was also a multiphase method. In the construction phase, a complete so-

lution is found using an Iterative Forward Search algorithm. In the next phase

a local optimum is found using a Hill Climbing algorithm. Afterwards, a mo-

di�ed version of Great Deluge (GD) technique is used. Simulated Annealing is

sometimes applied between GD iterations [54].

ITC2011 : the third competition occurred in 2011/12 and it was the �rst to adopt

the XHSTT format. Nowadays, more than 40 real world datasets, from 12 di�e-

rent countries, are available in such a format [61]. They can be used to evaluate

the performance of algorithms for high school/university timetabling. The com-

petition was divided into three phases: the �rst one was dedicated to improve

best known solutions from public instances; the second one aimed to evaluate the

solver performances over hidden instances in a constrained time, and; the third

one focused on improving best known solutions from the hidden instance set. The

best overall ranked solver was GOAL, followed by, respectively, Lectio, HySTT

and HFT. More detail of these solvers and recent work on XHSTT format is given

in sequence.

Fonseca et al. [35] developed a hybrid algorithm to solve the XHSTT timetabling

problem. They participated of ITC2011 under the codename GOAL. In the approach,

an initial solution is generated using Kingston High School Timetabling Engine (KHE).

This solution is improved through Simulated Annealing and then Iterated Local Search,

using seven neighbourhood moves.

CHAPTER 1. INTRODUCTION 7

Sørensen et al. [72] participated in the ITC2011 under the codename Lectio and de-

veloped an Adaptive Large Neighbourhood Search (ALNS) approach for XHSTT. Their

algorithm was composed of three ALNS strategies: remove strategy, adaptive strategy,

and accept strategy. Remove strategy makes several unassignments following problem-

related rules. The unassignments might be of times, resources, or both. Adaptive

strategy makes several greedy assignments at a time (for instance, testing all possible

assignments for each event at a time). The accept strategy is a temperature based

algorithm, similar to Simulated Annealing.

Khieri et al. [41] developed a hyper-heuritstic for XHSTT and participated in the

ITC2011 as HySTT. They used the KHE library to generate initial solutions and,

afterwards, applied a hyper-heuristic algorithm. The developed hyper-heuristic consists

of a framework that controls 11 low-level heuristics. The low-level heuristics are divided

in two sets: mutational and hill-climbing. Mutational operators do randomized moves

that are accepted when they do not degrade the incumbent solution more than an

acceptance factor ε. Afterwards, hill-climbing heuristics try to improve the mutated

solution. Recently they released an improved version of the hyper-heuristic solver,

where the best performing solver is Random Permutation Great Deluge (RPGD) [3].

Romros and Homberger [26] developed an Evolutionary Algorithm that was labelled

as HFT in ITC2011. In their approach, initially a solution is randomly generated consid-

ering the requirements to split events into sub-events. Afterwards, times and resources

are assigned to the sub-events through an insertion heuristic. While the computational

time has not been reached, a mutation step generates a new split of events based on the

incumbent split and the insertion heuristic is called again to assign times and resources.

The insertion heuristic searches, for each sub-event, a time-resources assignment that

does not violate any hard constraint. In such a case, the assignment is done; otherwise,

the sub-event is left unassigned.

More recently, Demirovi¢ and Musliu [24] proposed a maximum satis�ability (Max-

SAT) based approach for XHSTT timetabling. In their approach a local search algo-

CHAPTER 1. INTRODUCTION 8

rithm is used to drive an initial solution into a local optimum and then more powerful

large neighbourhood search (LNS) techniques based on Max-SAT are used to further

improve the solution. The proposed Max-SAT LNS has a destroy operator that removes

the assignments of all events related to a pair of resources or removes all assignments

of a given pair of days in the week. The insert operator tries to �nd the best insertion

for the unassigned events using an exhaustive search based on a Max-SAT formulation.

One limitation of the proposed Max-SAT approach is that the assignment of resources

could not be modelled, therefore it cannot be applied to instances that have this feature.

Although several solution approaches have been proposed for this problem, the XH-

STT problem model is relatively recent and, consequently, only a few of them tackle this

speci�c format. Moreover it is believed that there is still room for improvement in the

algorithmic approaches to this format. For instance, no problem speci�c matheuristic

has yet been proposed for this model. In the �eld of mathematical programming ap-

proaches no much e�ort has been put to develop alternative formulations to the existing

IP model. Therefore, this is the gap that this thesis aims to cover in the literature of

automated educational timetabling.

1.3 Document Structure

This thesis is organized into six chapters. In Chapter 2, the XHSTT format is ex-

plained in detail along with an integer programming formulation to handle it. Chapter

3 describes the proposed integer programming techniques for this timetabling problem

model, which includes an alternative formulation that applies cuts and preprocessing

techniques, a column generation decomposition, and a cut-and-solve approach. Chapter

4 presents the algorithms developed for this problem. It contains the method to gen-

erate initial solutions, the neighbourhood structure, metaheuristics developed, adapta-

tions proposed, and a problem-speci�c matheuristic for timetabling. Chapter 5 presents

the computational environment, the instance sets considered, the obtained results, dis-

CHAPTER 1. INTRODUCTION 9

cussion, and the new best known solutions and lower bounds achieved in this work.

Finally, Chapter 6 presents the concluding remarks, the contributions of this thesis,

and suggestions of future work on automated educational timetabling.

Chapter 2

The Timetabling Problem

This thesis considered the XHSTT model to represent the educational timetabling

problems. The XHSTT format was proposed by Post et al. [62] with the purpose of

becoming a standard format that covers the most important features of educational

timetabling. Such a model is split into four main entities: (i) Times, (ii) Resources,

(iii) Events, and (iv) Constraints. A solution consists of a set of assignments of times

and resources to the events. Each entity is explained in detail in the next sections, as

well as a complete integer programming formulation for this problem.

2.1 Times

Entity Times contains information related to the timeslots available for assignments.

A set of timeslots can also be grouped into a Time Group. It is common to group

together the times of a given week day and/or the morning/afternoon times into a

Time Group.

2.2 Resources

Entity Resources contains information about the resources that the educational

institution has. Each resource is of a speci�c Resource Type. Usual resource types

are: class, teacher, room, and laboratory. However, this is an abstract concept in the

10

CHAPTER 2. THE TIMETABLING PROBLEM 11

format and any type of resource can be speci�ed. Resources can also be grouped into

so called Resource Groups. A resource group can specify, for example, a set of teachers

of mathematics, a set of night classes, and a set of rooms having some speci�c feature.

2.3 Events

Entity Events contains information related to the events that have to be scheduled.

An Event is a meeting between resources. It speci�es that the resources should meet

for a given number of times. Events can also be grouped into Event Groups when they

share some speci�c feature, for example Gymnastic or Science lectures. An XHSTT

event has:

Duration: the number of times in which it has to be assigned.

Workload (optional): a number that will be added to the workload of the resources

assigned to attend it.

Time (optional): the preassigned time for it. It is often absent, if so, the XHSTT

solver should assign a set of times for the event.

Resources: the set of resources that attends the event. When a resource is preassigned,

its identi�er is given; otherwise, a resource of the proper type should be assigned

by the solver. Each resource plays a speci�c role in the event. The role is later

used to link it to certain constraints.

2.4 Constraints

Constraints de�ne what is required and what is desired in a solution for a timetabling

problem. The constraints are divided into hard constraints, whose compliance is manda-

tory; and soft constraints, whose satisfaction is only desirable. Each constraint can be

enabled or disabled in each instance and, when enabled, speci�ed as either hard or soft.

CHAPTER 2. THE TIMETABLING PROBLEM 12

Every constraint violation implies a deviation, which must be combined with the

constraint weight and with the cost function type to de�ne how the constraint is pe-

nalized in the objective function. There are three types of cost functions: Linear,

Quadratic, and Step. For constraints whose cost function is linear, the non-compliance

penalty is equal to the number of deviations multiplied by the weight of the constraint.

For quadratic cost constraints, the square of the number of deviations, multiplied by

the weight, will be added to the objective function. Finally, for step type constraints,

the weight will be added only once to the objective function, independently on how

many deviations occurred.

There are 16 constraint types in the XHSTT format:

1. Assign Time: speci�es the necessity of assigning enough timeslots for a set of

events;

2. Assign Resource: speci�es the requirement of assigning resources for a set of

events;

3. Prefer Times: indicates that some event has preference for a particular set of

timeslots;

4. Prefer Resources: indicates that some event has preference for a particular set

of resources.

5. Link Events: speci�es that a set of events should occur at the same time;

6. Order Events: enforces that one event should occur at least/most a certain

number of timeslots after another;

7. Spread Events: indicates that a set of events should be spread in at least/most

a certain number of days;

8. Avoid Split Assignments: speci�es that the same resource should be assigned

for all meets of an event;

CHAPTER 2. THE TIMETABLING PROBLEM 13

9. Distribute Split Events: indicates that a set of events has to be split between

a minimum and a maximum number of meets of a given duration;

10. Split Events: de�nes limits on the number of non-consecutive meets created for

an event and on their durations.

11. Avoid Clashes: states that resources must be assigned without clashes (i.e.

without assigning the same resource to more than one event per timeslot);

12. Avoid Unavailable Times: speci�es that certain resources are unavailable to

attend any event at some timeslots;

13. Limit Workload: restricts the workload of a given resource between minimum

and maximum bounds;

14. Limit Idle Times: states that the number of idle times per day must lie between

a minimum and a maximum bound for a set of resources. An idle time is a time

with no event assignment between other times with assignments within the same

day;

15. Limit Busy Times: indicates that the number of busy times in a day should lie

between a minimum and a maximum bound for a set of resources;

16. Cluster Busy Times: speci�es bounds on the number of days in which a resource

can be attending activities.

The objective function f(.) is calculated in terms of constraint violations. Each

violation is penalized according to its weight (minimization problem). The function

value is in fact a pair (H,S): feasibility value (H), which counts the violation of hard

constraints, and quality value, which counts the violation of soft constraints (S). For

example, (2, 51) represents a cost of two unities of feasibility and 51 unities of quality.

The solutions are �rst compared in terms of H and if two solutions have the same

CHAPTER 2. THE TIMETABLING PROBLEM 14

performance for feasibility, then they are compared in terms of S. When the feasibility

violation cost is 0 (feasible solution), H is usually omitted from the notation.

2.5 Integer Programming Formulation

A complete Integer Programming formulation for XHSTT was proposed by Kris-

tiansen et al. [48]. This formulation was designed to describe precisely the XHSTT

format. However, before this thesis, little e�ort has been made to improve it. This

formulation will be presented in this section and denoted as F1 throughout the thesis.

The formulation takes as main input sets:

T Times
T G Time Groups
R Resources
RG Resource Groups
E Events
EG Event Groups
C Constraints

An event e ∈ E has a duration De ∈ N and a demand for a set of resources (event

resources), denoted as er ∈ ERe. Furthermore, a resource demanded for the event er

can undertake a role roleer, which is used to link the resource to certain constraints.

A resource r ∈ R can be preassigned to ful�l the demand er ∈ ERe. Parameter

ρer ∈ {1, 0} takes value 1 if event resource er has a preassigned resource, and 0 otherwise,

while parameter ρ̂er,r ∈ {1, 0} takes value 1 if resource r is preassigned to event resource

er, and 0 otherwise. A sub-event se is de�ned as a fragment of a speci�c event e ∈

E . Each sub-event has a duration Dse ≤ De and inherits exactly the same resource

requirements of the source event.

Let SE be the entire set of sub-events of a XHSTT instance and let se ∈ SEe be a

set of the sub-events generated from an event e. The total duration of all sub-events

generated from event e in a solution must be exactly De. A set of all possible sub-events

with di�erent durations is created, such that all combinations of sub-events for a given

CHAPTER 2. THE TIMETABLING PROBLEM 15

event can be handled. For example, if an event has duration 4, the set of sub-events

for this event has the respective lengths: 1, 1, 1, 1, 2, 2, 3, and 4. Thereby the set of

possible sub-events for an event e ∈ E with duration De has
∑De

i=1b
De

i
c elements.

The set of resources and times are both extended with dummy-indices, denoted

dummy-resource rD and dummy-time tD, respectively. They are necessary to handle

the unusual case of an optimal solution in which one or more events do not have resources

or start times assigned.

Times T are organized in chronological order. Thus, pt denotes the index number

of time t ∈ T . A time group tg ∈ T G de�nes a set of times, in such a way t ∈ Ttg
denotes the times belonging to time group tg. Additionally

T startse,t = {t′ ∈ T \ {tD} | pt −Dse + 1 ≤ pt′ ≤ pt} ∀se∈SE
∀t∈T (2.1)

is pre-processed to denote the set of times that a sub-event se ∈ SE occurs assuming

that it is assigned start time t ∈ T .

Each constraint c ∈ C is of a speci�c type and it applies to certain events, resources,

or event groups. Notations e ∈ Ec, r ∈ Rc, and eg ∈ EGc represent, respectively, the

events, resources, or event groups that a constraint applies to.

2.5.1 Variables

The main decision variables of this formulation are xse,t,er,r binary variables:

xse,t,er,r =


1 if sub-event se is assigned to start time t and resource

r is assigned to event resource er.

0 otherwise.

additionally, the following auxiliary variables are used:

CHAPTER 2. THE TIMETABLING PROBLEM 16

yse,t = 1 if sub-event se is assigned to start time t; 0 otherwise.
wse,er,r = 1 if sub-event se is assigned to resource r for event resource er; 0 otherwise.

use = 1 if sub-event se is active; 0 otherwise.
vt,r = number of times in which resource r is used at time t.
qr,t = 1 if resource r is busy at time t; 0 otherwise.
pr,tg = 1 if resource r is busy at at least one time of time group tg; 0 otherwise.
oe,t = 1 if at least one sub-event of event e is assigned to time t; 0 otherwise.
leg,t = 1 if at least one event of event group eg is assigned to time t; 0 otherwise.
keg,r = 1 if resource r is assigned to at least one event in event group eg; 0 otherwise.
hr,tg,t = 1 if resource r has an idle time in time t in time group tg; 0 otherwise.
hfirste = ordinal number of the �rst time assigned to any sub-event of event e.
hlaste = ordinal number of the latest time assigned to any sub-event of event e.

Each constraint c ∈ C has a set of points-of-application which, in turn, might be

any XHSTT entity depending on the constraint that it is related to. To simplify the

notation, in some equations points-of-application will be denoted as p ∈ Pc regardless

of the entity. Each point-of-application is associated with a set of deviations, indexed

by d ∈ Dp, and each set of deviations has an associated non-negative cost. Therefore

the slack variables

sc,p,d = value of deviation d of point-of-application p in constraint c.

are used to calculate the penalties for each XHSTT constraint.

2.5.2 Constraints

In addition to all constraints described in the XHSTT speci�cation, some basic

constraints are required to ensure the consistency of the model. First of all, it is

necessary to make sure that only one start time is assigned to a sub-event, and the

number of resources assigned is exactly the same number of the event resources required

by the event:

∑
t∈T

∑
r∈Rer

xse,t,er,r = 1 ∀se∈SE
∀er∈ERse

(2.2)

CHAPTER 2. THE TIMETABLING PROBLEM 17

Constraint set (2.3) makes the link between variables xse,t,er,r and yse,t, in which

|ERse| denotes the number of event resources demanded for a sub-event se.

∑
er∈ERse

∑
r∈Rer

xse,t,er,r = |ERse| × yse,t ∀se∈SE
∀t∈T (2.3)

The link from variables xse,t,er,r to variables vt,r is shown in constraint set (2.4). For

each time t ∈ T \ {tD} and resource r ∈ R, vr,t will be active i� xse,t′ ,er,r is active.

Recall that t
′
represents the times that will be used if se is assigned t as starting time.

∑
se∈SE

∑
er∈ERse

∑
t′∈T start

se,t

xse,t′ ,er,r = vt,r
∀t∈T \{tD}
∀r∈R (2.4)

The link between variables xse,t,er,r and wse,er,r is done as follows:

∑
t∈T

xse,t,er,r = wse,er,r
∀se∈SE
∀er∈ERse\{tD}
∀r∈R

(2.5)

Constraint set (2.6) ensures that a starting time t ∈ T is not assigned to a sub-event

se ∈ SE if there is not enough continuous times after t to accommodate the duration

of se:

yse,t = 0 ∀se∈SE
∀t∈T \{tD} : pt+Dse−1>|T | (2.6)

Although all possible sub-events for an event are created, only a subset of them should

be active in the �nal solution. Recall that a sub-event is active if a starting time or a

resource is assigned to it. Constraint sets (2.7), (2.8), and (2.9) are imposed to ensure

the correct activation of the sub-events.

∑
r∈er\{rD}

wse,er,r ≤ use
∀se∈SE
∀er∈ERse : ρer=0 (2.7)

CHAPTER 2. THE TIMETABLING PROBLEM 18

∑
t∈T \{tD}

yse,t ≤ use ∀se ∈ SE (2.8)

∑
t∈T \{tD}

yse,t +
∑

er∈ERse:ρer=0

∑
r∈Rer\{rD}

wse,er,r ≥ use ∀se ∈ SE (2.9)

The sum of the durations of the sub-events of a given event must be equal to the

duration of the source event:

∑
se∈SEe

use ×Dse = De ∀e ∈ E (2.10)

A resource is busy at some time if it attends to at least one event at that time, and

it is busy at some time group if it is busy at one or more times within the times of that

time group. The values of variables qr,t and pr,tg are set by the following constraints:

|SE| × qr,t ≥ vt,r
∀r∈R
∀t∈T \{tD} (2.11)

qr,t ≤ vt,r
∀r∈R
∀t∈T \{tD} (2.12)

pr,tg ≥ qr,t
∀r∈R
∀tg∈T G
∀t∈Ttg

(2.13)

pr,tg ≤
∑
t∈Ttg

qr,t
∀r∈R
∀tg∈T G (2.14)

Constraints (2.11) and (2.13) establish lower bounds for variables qr,t and pr,tg. They

ensure that these variables must take value 1 if the resource is busy at the respective

time/time group. Constraints (2.12) and (2.14) are necessary to ensure that variables

qr,t and pr,tg are 0 if the resource is not busy at the respective time/time group.

CHAPTER 2. THE TIMETABLING PROBLEM 19

In sequence, each XHSTT speci�c constraint type is formulated. Let set Ci ⊆ C

denote all constraints of a certain type, as follows:

C1 � Assign Resource : An assign resource constraint penalizes a solution when no

resource is assigned to supply a demand of an event resource. Speci�cally, the

deviation at one point-of-application is the sum of the durations of the sub-events

of the respective event in which a resource is not assigned. The deviation s1
c,er

at each point-of-application of this constraint is calculated through the following

equation:

De −
∑

se∈SEe

∑
r∈Rer\{rD}

Dse × wse,er,r = s1
c,er

∀c∈C1
∀e∈Ec
∀er∈ERe : roleer=rolec

(2.15)

C2 � Assign Time : The assign time constraint penalizes sub-events in which times

are not assigned. The deviation s2
c,e at one point-of-application is the total du-

ration of those sub-events derived from the speci�c event in which a time is not

assigned.

De −
∑

se∈SEe

∑
t∈T \{tD}

Dse × yse,t = s2
c,e

∀c∈C2
∀e∈Ec (2.16)

C3 � Split Events : A split events constraint de�nes limits to the number of sub-

events that can be derived from a given event and to their durations. Let the

parameters Bamt
c ∈ N and B

amt

c ∈ N be, respectively, the minimum and the

maximum number of sub-events in which a given event can be split, and Bdur
c ∈ N

and B
dur

c be the minimum and maximum durations of such sub-events.

The value of the deviation at each point-of-application (each event) of this cons-

traint is given by the number of sub-events of the source event whose duration is

lower than Bdur
c or greater than B

dur

c (s3a
c,e) and the number of sub-events below

CHAPTER 2. THE TIMETABLING PROBLEM 20

Bamt
c , or above B

amt

c (s3b
c,e). The following constraint sets are imposed:

∑
se∈SEe :

Bdur
c >Dse∨B

dur
c <Dse

use = s3a
c,e

∀c∈C3
∀e∈Ec (2.17)

Bamt
c −

∑
se∈SEe

use ≤ s3b
c,e

∀c∈C3
∀e∈Ec (2.18)

∑
se∈SEe

use −B
amt

c ≤ s3b
c,e

∀c∈C3
∀e∈Ec (2.19)

The full deviation for constraint c ∈ C3 is given by s3a
c,e + s3b

c,e.

C4 � Distribute Split Events : Distribute split event constraints impose limits on

the number of sub-events of a particular duration that may be derived from an

event. Let Dc ∈ N be the duration of the sub-events for which this constraint

applies, and let Bc and Bc be the minimum and maximum number of sub-events

of duration Dc that may be derived from a given event, respectively.

Bc −
∑

se∈SEe
Dse=Dc

use ≤ s4
c,e

∀c∈C4
∀e∈Ec (2.20)

∑
se∈SEe
Dse=Dc

use −Bc ≤ s4
c,e

∀c∈C4
∀e∈Ec (2.21)

C5 � Prefer Resources : This constraint de�nes that an event resource has a prefer-

ence for certain resources. The assignment of all non-preferred resources is taken

and the duration of the sub-events in which these non-preferred resources are

assigned is summed to calculate the deviation. Let r ∈ Rc denote a preferred

CHAPTER 2. THE TIMETABLING PROBLEM 21

resource:

∑
se∈SEe

∑
r∈R\{rD} : r/∈Rc

Dse × wse,er,r = s5
c,er

∀c∈C5
∀e∈Ec
∀er∈ERe : ρer=0∧roleer=rolec

(2.22)

C6 � Prefer Times : Like the prefer resources constraint, events might also have pre-

ferences for certain times. The deviation is calculated for each event by summing

the duration of all sub-events which are assigned a time that is not in the preferred

times list. The constraint has an optional duration-property, denoted Dc ∈ N0. If

this property is given, only sub-events of duration Dc are considered. Let t ∈ Tc
denote a preferred time:

∑
se∈SEe

∑
t∈T \{tD}:t/∈Tc∧Dc=Dse

Dse × yse,t = s6
c,er

∀c∈C6
∀e∈Ec (2.23)

C7 � Avoid Split Assignments : When an event is split into sub-events, each of

its event resources is also split for each sub-event. A di�erent resource may be

assigned to each of these generated event resources. This constraint penalizes the

assignment of di�erent resources to event resources within the same event group.

The constraint examines the demand of all event resources derived from the events

in the event group and it calculates the number of distinct resources assigned to

them, ignoring unassigned event resources. The deviation s7
c,eg is the number of

resources that exceeds 1.

∑
er∈ERe,ρer=0
rolec=roleer

wse,er,r ≤ keg,r

∀c∈C7
∀r∈R
∀eg∈EGc
∀e∈Eeg
∀se∈SEe

(2.24)

∑
r∈R

keg,r − 1 ≤ s7
c,eg

∀c∈C7
∀eg∈EGc (2.25)

CHAPTER 2. THE TIMETABLING PROBLEM 22

C8 � Spread Events : The spread events constraint has a deviation for each time

group tg ∈ T Gc ∈ C8. Let Bc,tg and Bc,tg be, respectively, the minimum and

maximum number of sub-events of a given event that can be placed in time group

tg of constraint c. The deviation s8
c,eg,tg, for each time group, is given by the

number of assignments of sub-events from event group eg that is below Bc,tg ∈ N

or above Bc,tg ∈ N.

Bc,tg −
∑

se∈SEe

∑
e∈Eeg

∑
t∈Ttg

yse,t ≤ s8
c,eg,tg

∀c∈C8
∀eg∈EGc
∀tg∈T Gc

(2.26)

∑
se∈SEe

∑
e∈Eeg

∑
t∈Ttg

yse,t −Bc,tg ≤ s8
c,eg,tg

∀c∈C8
∀eg∈EGc
∀tg∈T Gc

(2.27)

C9 � Link Events : A link event constraint speci�es that a set of events within an

event group should be assigned to the same starting time. The deviation of this

constraint is set as the number of times in which at least one event in the event

group does not occur simultaneously with the others. Constraints (2.28), (2.29)

and (2.30) ensure that variables oe,t and leg,t assume correct values. The slack

variable of Link Events constraint, s9
c,eg,t, is de�ned in constraint (2.31).

∑
t′∈T start

se,t

yse,t′ ≤ oe,t
∀e∈E
∀se∈SEe
∀t∈T \{tD}

(2.28)

∑
se∈SEe

∑
t′∈T start

se,t

yse,t′ ≥ oe,t
∀e∈E
∀se∈SEe
∀t∈T \{tD}

(2.29)

leg,t ≥ oe,t
∀eg∈EG
∀e∈Eeg
∀t∈T \{tD}

(2.30)

CHAPTER 2. THE TIMETABLING PROBLEM 23

leg,t − oe,t ≤ s9
c,eg,t

∀c∈C9
∀eg∈EGc
∀t∈T \{tD}

(2.31)

C10 � Order Events : An order events constraint speci�es that the times assigned

to two events should be in order, in such a way that the �rst event ends before

the second event starts. Let parameters Bc ∈ N and Bc ∈ N be, respectively,

the minimum and maximum number of times that may separate two events. Let

(e, ê) ∈ (E , E)c denote an event pair such that this constraint applies to. The

deviation, s10
c,e,ê, is then given by the amount by which the di�erence between

these hlaste and hfirste exceeds Bc or falls below Bc.

pt × yse,t +Dse ≤ hlaste

∀c∈C10
∀e∈Ec
∀se∈SEe
∀t∈T \{tD}

(2.32)

|T | − (|T | − pt)× yse,t ≥ hfirstê

∀c∈C10
∀ê∈Ec
∀se∈SEe
∀t∈T \{tD}

(2.33)

Bc − (hfirstê − hlaste) ≤ s10
c,e,ê

∀c∈C10
∀(e,ê)∈(E,E)c

(2.34)

(hfirstê − hlaste)−Bc ≤ s10
c,e,ê

∀c∈C10
∀(e,ê)∈(E,E)c

(2.35)

C11 � Avoid Clashes : These constraints specify that certain resources should not

have clashes in their timetables. It means they should not be assigned to two or

more events simultaneously. This constraint produces a set of deviations for each

resource. For each time, the number of occurrences of a given resource minus one

is calculated to estimate the deviation of that resource for that time.

vt,r − 1 ≤ s11
c,r,t

∀c∈C11
∀r∈Rc
∀t∈T \{tD}

(2.36)

CHAPTER 2. THE TIMETABLING PROBLEM 24

C12 � Avoid Unavailable Times : An avoid unavailable times constraint speci�es

that certain resources are unavailable for any event at certain times. The de-

viation, s12
c,r is the number of times that are being attended by an unavailable

resource. Let t ∈ Tc denote that t is an unavailable time for constraint c ∈ C12:

∑
t∈Tc

qr,t = s12
c,r

∀c∈C12
∀r∈Rc

(2.37)

C13 � Limit Idle Times : A resource is idle at some time t ∈ Ttg if it is not attending

any sub-event at t, but it is attending events before and after t in the same time

group tg. Limit idle times constraint limits the number of idle times a resource

may have within a time group.

qr,t̂ − qr,t + qr,ˆ̂t − 1 ≤ hr,tg,t
∀r∈R
∀tg∈T G
∀t,t̂,ˆ̂t∈Ttg : pt̂<pt<pˆ̂t

(2.38)

For each resource of the constraint, the deviation is the number of cases in which

the amount of idle times is under Bc ∈ N or above Bc ∈ N. Slack variable s13
c,r

computes the sum of such cases.

Bc,r −
∑

tg∈T Gc

hr,tg ≤ s13
c,r

∀c∈C13
∀r∈Rc

(2.39)

∑
tg∈T Gc

hr,tg −Bc,r ≤ s13
c,r

∀c∈C13
∀r∈Rc

(2.40)

C14 � Cluster Busy Times : A cluster busy times constraint limits the number of

time groups in which a resource may be busy. The deviation is given by number

of cases in which the resource is busy for less than Bc ∈ N time groups, or for

more than Bc ∈ N time groups. Let tg ∈ T Gc denote a time group in which such

CHAPTER 2. THE TIMETABLING PROBLEM 25

a constraint applies:

Bc −
∑

tg∈T Gc

pr,tg ≤ s14
c,r

∀c∈C14
∀r∈Rc

(2.41)

∑
tg∈c

pr,tg −Bc ≤ s14
c,r

∀c∈C14
∀r∈Rc

(2.42)

C15 � Limit Busy Times : Limit busy times constraint places limits on the number

of times a resource may be busy within some time groups. These constraints

produce a deviation for each time group. The deviations are given by the number

of cases in which the resource is busy for less than Bc ∈ N time groups, or for

more than Bc ∈ N time groups.

Bc − |Ttg| × (1− pr,tg)−
∑
t∈Ttg

qr,t ≤ s15
c,r,tg

∀c∈C15
∀r∈Rc
∀tg∈T Gc

(2.43)

∑
t∈Ttg

qr,t −Bc − |Ttg| × (1− pr,tg) ≤ s15
c,r,tg

∀c∈C15
∀r∈Rc
∀tg∈T Gc

(2.44)

C16 � Limit Workload : The workload of a resource is given by We,se,er = Dse×Ler

De
, in

which Ler ∈ N is the workload of the event resource er. These values are given

as inputs within the information related to events. A limit workload constraint

places limits on the total workload that is assigned to resources. The deviation

of this constraint, s16
c,r, is the amount of cases in which the resource workload falls

short Bc ∈ N, or exceeds Bc ∈ N, rounded up to the nearest integer.

Bc −
∑
e∈Ec

∑
se∈SEe

∑
t∈T \{tD}

∑
er∈ERe

We,se,er × xse,t,er,r ≤ s16
c,r

∀c∈C16
∀r∈Rc

(2.45)

CHAPTER 2. THE TIMETABLING PROBLEM 26

∑
e∈Ec

∑
se∈SEe

∑
t∈T \{tD}

∑
er∈ERe

We,se,er × xse,t,er,r −Bc ≤ s16
c,r

∀c∈C16
∀r∈Rc

(2.46)

2.5.3 Objective Function

Given the slack variables for each XHSTT constraint, the cost of a point-of-application

of a constraint c ∈ C is de�ned based on three properties: typec (it can be either hard

or soft), weight (wc ∈ N), and the CostFunction (CF) to use.

The cost of a constraint c ∈ C, which contains slack variable sc,p,d, is denoted by

f(sc,p,d), and it is calculated as shown in (2.47).

f(sc,p,d) = wc × CostFunction(sc,p,d). (2.47)

Three di�erent cost function types are allowed: linear, quadratic and step. These

functions are evaluated in terms of slack variables sc,p,d, such as follows:

Linear : Sum of deviations.

CFLinear =
∑
p∈Pc

∑
d∈Dp

sc,p,d. (2.48)

Quadratic : Sum of deviation squares.

A variable sc,p,d,i ∈ {0, 1} is introduced to handle with this non-linear cost func-

tion. It assumes value 1 if the deviation d ∈ Dp of the point of application p ∈ Pc of

constraint c has the value i ∈ I, or 0 otherwise. Let I = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}:

CFQuadratic =
∑
p∈Pc

∑
d∈Dp

∑
i∈I

i2 × sc,d,p,i (2.49)

CHAPTER 2. THE TIMETABLING PROBLEM 27

The link from sc,p,d to sc,p,d,i is given by:

∑
p∈Pc

∑
d∈Dp

∑
i∈I

i× sc,d,p,i = sc,p,d
∀p∈Pc
∀d∈Dp

(2.50)

It is also necessary to ensure that only a single integer value is selected by the

binary indicator. Therefore the following constraint set must be considered:

∑
i∈I

i× sc,d,p,i = 1 ∀p∈Pc
∀d∈Dp

(2.51)

Step : Penalizes the number of deviations, regardless their magnitudes.

The binary variable uStepc,p,d is introduced. It assumes value 1 i� sc,p,d > 0 for

constraint c, point-of-application p ∈ Pc, and deviation d ∈ Dp, or 0 otherwise.

The cost function and constraint set are formulated as shown in (2.52) and (2.53),

respectively.

CF Step =
∑
p∈Pc

∑
d∈Dp

uStepc,p,d (2.52)

M × uStepcp,d ≥ sc,p,d
∀p∈Pc
∀d∈Dp

(2.53)

in which M ∈ N is a su�ciently large number.

Let Ψc be the set of tuples that a constraint c ∈ C applies to. For example, suppose

c ∈ C4, then for a τ ∈ Ψc, τ ≡ (e, er) and s4
c,τ ≡ s4

c,e,er. Thus, the objective function

can be stated as shown in Equation (2.54).

min z =
16∑
j=1

∑
c∈Cj

∑
τ∈Ψc

f(sjc,τ) (2.54)

CHAPTER 2. THE TIMETABLING PROBLEM 28

The full IP model would consist of minimizing z, subject to constraints (2.2) to

(2.54). However a di�erent approach is taken. This model is solved in two steps as

follows.

By the de�nition of XHSTT, hard constraints always take priority over soft con-

straints. However, hard constraints still can be violated, which implies in a hard cost

of a solution. Considering this feature, the following approach is taken to solve the

model: in Step 1 an Integer Programming model containing only the hard constraints

is built. This model is given to the solver, which runs until the time limit is reached or

until the model is solved to optimality. The objective value found is the hard cost of

the solution (hopefully 0). If the IP has been solved to optimality, Step 2 is performed,

which consists of adding all the soft constraints to the model and warm-starting the

solver from its previous state. Additionally, a constraint is added to ensure that the

optimal value of the hard cost is kept. Let zhard denote the sum of the cost of all slack

variables of hard constraints, the following constraint is added:

zhard = hard cost (2.55)

Once such an IP model is solved, the cost of the obtained solution, minus the hard

cost found in Step 1, is the soft cost of the solution. The nature of this solution approach

resembles lexicographic multi-objective optimization.

Chapter 3

Formulations

This chapter presents the proposed mathematical programming formulations for

XHSTT. Section 3.1 presents several valid inequalities and pre-processing techniques

leading to an alternative formulation for XHSTT. Section 3.2 presents a Dantzig-Wolfe

column generation approach for educational timetabling. Finally, Section 3.3 presents

a cut-and-solve approach applied to XHSTT.

3.1 Alternative Formulation

In this section, starting from the original formulation F1 presented in the previous

section, some valid inequalities and an extended �ow based formulation for XHSTT are

proposed, yielding an improved formulation denoted throughout the paper as F2. As

can be seen later in Section 5.3, F2 is stronger than F1, since it is strictly contained

in F1, i.e. there are valid fractional points for F1 that are not valid for F2. These

cuts were found either by analysing fractional solutions of F1 (3.1.5 and 3.1.7) or with

the aid of an automatic integer programming reformulation tool [11] (3.1.4 and 3.1.6),

which searches for fractional multipliers to generate Chvàtal-Gomory cuts [31]. This is

a computationally expensive o�ine tool. Once these multipliers were discovered, it was

relatively easy to generalize these cuts to the timetabling context, such that now their

separation is trivial. Pre-processing routines are also proposed to remove unnecessary

constraints and variables. All those changes are described in the following subsections.

29

CHAPTER 3. FORMULATIONS 30

3.1.1 Generation of Sub-events

In F2, only feasible sub-events are generated. A sub-event is called feasible when

it does not violate any hard split events constraint. This reduction aims to make the

resulting IP model smaller, faster to build, and less dependant on the duration of the

events. For example, suppose an event e of duration De = 4 and a hard split events

constraints c stating that e should be split into sub-events of duration 2 (B
dur

c = Bdur
c =

2). In the complete formulation, a set of sub-events with the following lengths 1, 1, 1,

1, 2, 2, 3, and 4 would be generated. In this reduced reformulation, the resulting set of

sub-events would be considerably smaller, creating only two sub-events of lengths 2 and

2. However, this bene�t is achieved at expense of not ensuring optimality in a special

case in which the optimal solution has hard cost di�erent from zero. In practice, this

is not a big problem for two reasons: (i) most of XHSTT problems are feasible (i.e.

they have at least one possible solution with hard cost equals to zero), and; (ii) in real

world problems, it is expected to exist a solution having zero cost of hard constraints

violation. Algorithm 1 presents the enhanced procedure to generate sub-events.

The algorithm takes as input the set of events E and a set of split events constraints

C3. Each event has, initially, an empty set of sub-events SEe (line 3). For each possible

duration k of sub-events, if the event is not constrained by any hard split events cons-

traint (line 5), the all possible sub-events of duration k are generated normally (lines

6 to 8). Otherwise, sub-events of duration k will be generated only if k ≥ Bdur
c and

k ≤ B
dur

c (line 10). In line 14, the sub-events of an event e, SEe are added to the full

set of sub-events SE .

3.1.2 Alternative Formulation for Link Events

One of the constraints that makes this problem di�cult is the requirement of linked

events. In this alternative formulation, the structure of link events constraints is ex-

plored. When events are connected by hard link events constraints, they must occur at

CHAPTER 3. FORMULATIONS 31

Algorithm 1: Alternative procedure to generate sub-events in F2.
Input: A set of events E and a set of split events constraints C3.
Output: A set of sub-events SE per event e ∈ E .

1 SE = ∅;
2 foreach e ∈ E do
3 SEe = ∅;
4 foreach k = {1, . . . , De} do
5 if @c ∈ C3 | e ∈ Ec ∧ typec = hard then
6 foreach j = {k, . . . , De} do
7 Dse = k;
8 SEe = SEe ∪ {Dse};

9 else

10 if k ≥ Bdur
c and k ≤ B

dur

c then
11 foreach j = {k, . . . , De} do
12 Dse = k;
13 SEe = SEe ∪ {Dse};

14 SE = SE ∪ SEe;
15 return SE ;

the same time and they must be split in the same way. Considering this fact, constraint

sets (2.28), (2.29), (2.30), and (2.31) can be replaced by:

yse,t = yŝe,t

∀ c ∈ C10, eg ∈ EGc,
e ∈ eg | first(eg) = e,
ê ∈ eg | first(eg) 6= ê,

(se, ŝe) ∈ (SEe, SE ê), t ∈ T \ {tD}
(3.1)

in which first(.) returns the �rst element of the set of events in event group eg. When

the events that belong to the same event group constrained by link events have di�erent

durations or are constrained by di�erent split events constraints, this reformulation is

not applied. Once again, such a reformulation does not ensure optimality if the optimal

solution has hard cost di�erent from zero.

CHAPTER 3. FORMULATIONS 32

3.1.3 Alternative Formulation for Avoid Clashes

In real world problems, as well as for all the existing XHSTT instances, the avoid

clashes constraints are always hard ones. Therefore, constraint sets (2.4), (2.11), (2.12),

and (2.36) can be replaced by:

∑
se∈SE

∑
er∈ERse

∑
t̂∈T start

se,t

xse,t̂,er,r = qr,t
∀t∈T \{tD}
∀r∈R (3.2)

Note that the auxiliary variable type vt,r ∈ N is no longer used in F2. Consequently,

it was removed from the model in the alternative formulation.

3.1.4 Alternative Formulation to Link X and Y (LXY)

The link between variables xse,t,er,r and yse,t in F1 might be strengthened if one

considers the link of each single variable xse,t,er,r to each single variable yse,t, instead

of linking a set of variables xse,t,er,r to |erse| × yse,t. Furthermore, when a hard prefer

resources constraint applies to event e, only the preferred resources should be eligible for

the assignment (assuming the existence of a feasible solution for the problem). Taking

into account such points, constraint set (2.3) was replaced by:

xse,t,er,r = yse,t

∀se∈SE
∀t∈T ,
∀er∈ERse,
∀r∈Rer : r∈c∈C5 ∨ C5=∅ ∨ typec 6=hard

(3.3)

3.1.5 Cluster Busy Times Cut (CBT)

A lower bound on the number of days a resource r is busy can be deduced by taking

the sum of the durations of the events that are preassigned to r divided by the number

of times per day (timesDay). This bound is rounded up to the nearest integer. This

cut was �rst proposed by Santos et al. [67] and adapted to XHSTT in this work:

CHAPTER 3. FORMULATIONS 33

∑
tg∈T Gc

pr,tg ≥


∑

e∈E:
er∈ERe
ρ̂er,r=1

De

timesDay

 ∀c∈C14
∀r∈Rc

(3.4)

3.1.6 Link Y and Q Cut (LYQ)

For any resource r and time t, if r is busy at t, at least one of the sub-events that

can be assigned to r will be occurring at t. If a hard prefer resources constraint applies

to the sub-event, the sub-event will be considered only when the resource is a preferred

resource.

qr,t ≤
∑
se∈SE :

r∈er∈ERse∧
r∈c∈C5∨C5=∅∨typec 6=hard

yse,t
∀r∈R
∀t∈T \{tD} (3.5)

3.1.7 Number of Busy Times Cut (NBT)

The number of busy times of a resource r is computed through variables qr,t. How-

ever, in order to strengthen the formulation, this number could be explicitly given to

the IP model when no resource assignment is required:

∑
t∈T

qr,t =
∑
e∈E:

er∈ERe∧ρ̂er,r=1

De ∀r ∈ R (3.6)

If an assign resource constraint is present, for any resource eligible to more assignments

than the preassigned ones, the inequality is given by:

CHAPTER 3. FORMULATIONS 34

∑
t∈T

qr,t ≥
∑
e∈E:

er∈ERe∧ρ̂er,r=1

De
∀r∈R:
∃c∈C1 | typer=roleType(rolec) (3.7)

3.1.8 Multicomodity Flow Reformulation (MCF)

Dorneles et al. [27] modelled the High School Timetabling problem as a Multico-

modity Flow problem. The model tackled by Dorneles et al. covers only a subset of

the features and constraints present in XHSTT. Therefore, an adaptation of Dorneles'

model that address the XHSTT features is presented.

Each resource is represented by a commodity. For each resource r ∈ R a graph

whose �ow represents the resource's schedule is created. Let Gr = (Vr,Ar) denote such

a graph, in which V is the set of nodes and A is the set of arcs. Each node has a set of

pull out arcs A+
r,v ⊆ A and a set of pull in arcs A−r,v ⊆ A. Variables

ϕa =

1 if �ow goes through arc a.

0 otherwise.

are added to the new formulation F2 and parameter bv has value 1 when node v is the

source, -1 when it is the sink, or 0 otherwise.

Figure 3.1 presents an example of this graph, in which all types of arcs are shown

for a given resource r. Each arc has a speci�c meaning. Whenever the arc has the same

meaning of a variable in F1, new variable ϕa is not created and the respective variable

in F1 is used instead. The meaning of each type of arc a ∈ A is given below:

• Assignment arcs are used to denote that a given resource r is attending one event

at time t. These arcs are denoted by binary variables qr,t, whose meaning is the

same described before in the complete formulation.

CHAPTER 3. FORMULATIONS 35

• Idle time arcs represent that a resource r has an idle time between busy times at

time t in time group tg. These arcs correspond to binary variable hr,tg,t, which

also came from the original formulation.

• Cluster busy time arcs denote that a given resource r is busy for at least one time

in time group tg. These arcs are denoted by binary variables pr,tg, which are also

the same from the complete formulation.

• Arcs aINr,tg,t and aOUTr,tg,t are given for each resource r, time group tg, and time t.

They denote, respectively, that the �rst assignment in time group tg for resource

r is at time t and that the last assignment is at time t.

• Day-o� arcs aOFFr,tg represent that a resource r is not busy at any of the times in

time group tg. These arcs lead to a node that represents the next time group or

to the sink node.

source

pr,tg

qr,t

qr,t

qr,t

qr,t

hr,tg,t

hr,tg,t

pr,tg

qr,t

qr,t

qr,t

qr,t

hr,tg,t

hr,tg,t

pr,tg

qr,t

qr,t

qr,t

qr,t

hr,tg,t

hr,tg,t

sink

Timegroup 1 Timegroup 2 Timegroup 3

t4

t3

t2

t1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Figure 3.1: Example of network for a resource in a toy instance consisting of three days,
having four times each (adapted from [27]).

Every path in such a graph starts from the source node, alternates the arcs providing

information about the time assignments, idle times, and busy time groups (usually days)

CHAPTER 3. FORMULATIONS 36

for the resource and ends at the sink node. Figure 3.2 presents an example of a feasible

�ow for a given resource. In this example, the resource is busy at the �rst time (t1) of

Timegroup 1, has a idle time at t2 and is busy again at times t3 and t4. In sequence,

the resource has a day o� in Timegroup 2 and it is busy again at times t2 and t3 in

Timegroup 3.

source

pr,tg

qr,t

qr,t

qr,t

qr,t

hr,tg,t

hr,tg,t

pr,tg

qr,t

qr,t

qr,t

qr,t

hr,tg,t

hr,tg,t

pr,tg

qr,t

qr,t

qr,t

qr,t

hr,tg,t

hr,tg,t

sink

Timegroup 1 Timegroup 2 Timegroup 3

t4

t3

t2

t1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Figure 3.2: Example of schedule for one resource r (adapted from [27]).

The following set of constraints is added to the formulation to ensure the �ow

conservation in the nodes:

∑
a∈A+

r,v

ϕa −
∑
a∈A−r,v

ϕa = bv
∀r∈R
∀v∈Vr (3.8)

Some paths should be explicitly forbidden on the network �ow formulation since

they lead to miss calculation of penalties. Figure 3.3 illustrates the two cases that shall

be avoided. In the �rst case, an arc goes to node 5 and another leaves right from node

5. This case leads to miss calculation of penalties for Cluster Busy Times constraints

because the �ow goes into a time group even if it does not have any assignment in any

time of that day. Therefore a time group would be counted as busy when it is in fact

not busy. Constraint (3.9) is added to forbid such paths:

CHAPTER 3. FORMULATIONS 37

aINr,tg,t + aOUTr,tg,t ≤ 1
∀r∈R
∀tg∈T G
∀t∈Ttg

(3.9)

In the second case, constraint limit idle times is miss calculated because a time

should not be counted as idle when there is no busy time before it in a given time

group. The time also should not be counted when there is no busy time after itself

within the same time group. Constraints (3.10) and (3.11) disable such paths:

aINr,tg,t + hr,tg,t ≤ 1
∀r∈R
∀tg∈T G
∀t∈Ttg

(3.10)

aOUTr,tg,t + hr,tg,t ≤ 1
∀r∈R
∀tg∈T G
∀t∈Ttg

(3.11)

qr,t

qr,t

qr,t

qr,t

hr,tg,t

hr,tg,t

2

3

4

5

6

7

qr,t

qr,t

qr,t

qr,t

hr,tg,t

hr,tg,t

2

3

4

5

6

7

Case 1 Case 2

Figure 3.3: Forbidden paths in the network (adapted from [27]).

Constraints cluster busy times and limit idle times are handled by this network �ow

model. Therefore constraint sets (2.13), (2.14) and (2.38) can be removed from F2.

CHAPTER 3. FORMULATIONS 38

3.2 Column Generation

This section presents the application of Dantzig-Wolfe decomposition principles [21]

to the alternative formulation. This approach is based on the convexi�cation of extreme

points for a subset of constrains in a linear program. The technique works in two steps.

In the �rst step, the original problem is reformulated in such a way that a subset of the

constraints is convexi�ed. In the second step, the reformulated problem is solved using

column generation. This process is iteratively executed until no column has negative

reduced cost. The reformulated version of the original problem, without the refereed

subset of constraints, is known as the Master Problem and the problem of calculating

the cost of a column through this subset of constraints, as the Pricing Problem. A

column can be seen as a possible piece of a solution. For instance, in a vehicle routing

problem a column could be formulated as a possible route for a single vehicle and the

�nal solution would be a selection of one column (route) for each vehicle respecting the

problem constraints.

In the present application of Dantzig-Wolfe Column Generation, the Pricing Pro-

blem consists of �nding, for each resource r ∈ R, the con�guration of busy/idle times

in its timetable with the smallest reduced cost. In this formulation, each con�guration

of busy/idle times is a column and will be also refereed to as pattern. Considering

this approach, all resource related constraints (C11 - C16) are calculated in the Pricing

Problem, leaving only the remaining ones to be handled in the Master Problem. This

approach leads to a combinatorial explosion on the number of columns. Therefore, the

columns are generated on demand throughout the optimization process. This scheme

is known as delayed column generation.

Table 3.1 presents an example of a column for a resource. Suppose there is a penalty

of one unity for each idle time between busy times and of �ve unities for having more

than four working days on the week. Hence this column (timetable) have a cost of seven

unities.

CHAPTER 3. FORMULATIONS 39

Table 3.1: Example of pattern representation in the proposed Dantzig-Wolfe decompo-
sition.

Prof. Smith
Mon Tue Wed Thu Fri

Binary variables λr,k are introduced to the model for each resource r ∈ R and

possible pattern k ∈ K:

λr,k =

1 if resource r follows pattern k.

0 otherwise.

Parameter qr,t,k is given as input for each resource r ∈ R, time t ∈ T , and pattern

k ∈ K. It has value 1 if resource r is busy at time t in pattern k, and 0 otherwise.

Having these additional variables and parameters, the Master Problem M can be stated

as:

min z =
10∑
j=1

∑
c∈Cj

∑
τ∈Ψc

f(sjc,τ) +
∑
k∈K

∑
r∈R

c̄r,k × λr,k (3.12)

Subject to:

∑
k∈K

λr,k × qr,t,k = qr,t ∀t ∈ T , r ∈ R (3.13)

CHAPTER 3. FORMULATIONS 40

∑
k∈K

λr,k = 1 ∀r ∈ R (3.14)

Constraints 2.2-2.27, 2.32-2.35, 3.1, 3.3 and 3.5 are also included in the Master

Problem. Note that the integrality constraint is relaxed for all variables in the Master

Problem. Constraints 3.13 link variables λr,k and variables qr,t. Constraint set 3.14

ensures convexity for λr,k variables. In Equation 3.12 the cost for penalties of event and

event group related constraints is minimized. The last term of the objective function

represents the cost of the selected patterns for each resource.

The cost of a pattern is calculated in the Pricing Problem. The Pricing Problem

Pr,k of a pattern k for a resource r ∈ R is an Integer Program as stated below:

min
16∑
j=11

∑
c∈Cj

∑
τ∈Ψc

f(sjc,τ)− παr −
∑
t∈T

πβt,r × qr,t (3.15)

Where πα represents the dual value of convexity constraints 3.14 and πβ represents

the dual value of constraints 3.13.

The Pricing Problem is subject to constraints 2.37, 2.39-2.46, 3.4 and 3.6-3.11.

Integrality constraints apply for all variables in the Pricing Problem.

Given the de�nitions of the Master Problem, of the Pricing Problem, and of a pat-

tern, Algorithm 2 summarizes the developed implementation of Dantzig-Wolfe Column

Generation approach for educational timetabling.

Line 1 loads the Master Problem for the input instance P . In line 2, k is set to 0.

k is simply an integer index to di�erentiate the patterns for each resource r ∈ R. k is

updated at each iteration (line 4). newColumns is a binary �ag that indicates whether

there is at least one new column with reduced cost smaller than 0 or not. Initially

newColumns is set as false (⊥) (line 5) and, if a new column having c̄r,k < 0 is found,

CHAPTER 3. FORMULATIONS 41

Algorithm 2: Implementation of Dantzig-Wolfe Column Generation.
Input: XHSTT instance P and a set of resources R.
Output: Best linear solution s found.

1 M ← Load master problem for instance P ;
2 k ← 0;
3 repeat
4 k ← k + 1;
5 newColumns← ⊥;
6 (s, πα, πβ) ← Solve master problem M ;
7 foreach r ∈ R do
8 Pr,k ← Load pricing problem for r with (πα, πβ);
9 (λr,k, c̄r,k)← Solve pricing problem Pr,k;
10 if c̄r,k < 0 then
11 M ←M ∪ λr,k;
12 newColumns← >;

13 until newColumns;
14 return s;

newColumns is set as true (>) (line 12) indicating that one more iteration is needed

(line 13). Each iteration is composed by lines 4 to 12. At each iteration, the Master

Problem M is solved (line 6) generating a linear primal solution s and dual solutions πα

and πβ. For each resource r ∈ R, the Pricing Problem Pr,k is loaded solved considering

the dual vectors previously found (lines 8 and 9). The output of each pricing problem

is a new column λr,k and its reduced cost c̄r,k. If this new column has a reduced cost

smaller than 0 it is added to the master problem for the next iteration and the �ag

newColumns is set to > indicating the need of a new iteration. The process stops

when, for all resources, no column with reduced cost smaller than 0 could be found in

Pr,k. The optimal linear solution s is given as output in such a case.

CHAPTER 3. FORMULATIONS 42

3.3 Cut-and-Solve

The cut-and-solve algorithm was �rst proposed by Climer and Zhang [18] and ap-

plied to the travelling salesman problem. Climer and Zhang also prove optimality and

termination for this method. Cut-and-solve search is di�erent from traditional tree

search as there is no branching. At each node in the search path, a relaxed problem

PR and a sparse problem PS are solved and a constraint is added to the relaxed pro-

blem. The sparse problems provide incumbent solutions. When the constraining of

the relaxed problem becomes tight enough, its solution value becomes no better than

the incumbent solution value. At this point, the incumbent solution is declared to be

optimal. The algorithm can be stopped at any-time as an incumbent solution is found

at the root node and continuously updated during the search.

Cut-and-solve enjoys two favourable properties. Since there is no branching, there

are no �wrong� sub-trees in which the search may get lost. Furthermore, its memory

requirement is negligible. For these reasons, it has potential for problems that are

di�cult to solve using depth-�rst or best-�rst search tree methods [18]. Algorithm 3

presents the developed implementation of the cut-and-solve algorithm for educational

timetabling.

In line 1, the sparse problem is de�ned as a copy of the original integer programming

problem. The IP problem in built considering the alternative formulation F2. In line

2, the relaxed problem PR is generated by relaxing the integrality constraint for all

variables in the original problem P . In sequence the resulting relaxed problem is solved.

In line 5, the variables having reduced cost smaller than α is selected to set L.

In line 6, a constraint stating that the search space is restricted to the variables not

belonging to L (i.e.
∑

x∈L x = 0) is added to PS. The resulting integer program is

called sparse problem. After that, the sparse problem is solved. If the best lower bound

for the relaxed problem is greater or equal to the optimal integer solution generated at

line 8, the solution s is returned and claimed to be optimal (lines 9 and 10). In line

CHAPTER 3. FORMULATIONS 43

Algorithm 3: Implementation of cut-and-solve algorithm.
Input: Integer programming problem P, obj. function f(.), and minimum

reduced cost α.
Output: Best solution s found.

1 PS ←P;
2 PR ← Relax integrality in PS;
3 Solve PR;
4 repeat
5 L ← Variables in PR with reduced cost > α;
6 Add constraint

∑
x∈L x = 0 to PS;

7 sR ← Optimal linear solution in PR;
8 s← Optimal integer solution in PS;
9 if f(sR) ≥ f(s) then
10 return s;

11 Remove constraint
∑

x∈L x = 0 from PS;
12 Add constraint

∑
x∈L x ≥ 1 to PS;

13 Add constraint
∑

x∈L x ≥ 1 to PR;
14 until |L| = 0;
15 return s;

11, the cut applied at line 6 is removed and the sparse problem is not strict to only

variables not in L any more.

Lines 12 and 13 add the piercing cut to both PR and PS. A piercing cut is a cut

that removes at least one feasible integer solution from the solution space of P. Thus,

the piercing cut tightens the problem and reduces the size of its solution space. This is

ensured by adding a constraint setting the sum of the values of all variables that have

reduced cost smaller or equal than α to be equal or greater than one. This procedure

is repeated until there is no variable to add to the next piercing cut (i.e. |L| = 0).

Chapter 4

Algorithms

This chapter presents the algorithms implemented in this thesis. Section 4.1 presents

the constructive algorithm for generating initial solutions. It is based on several graph

algorithms and heuristics. Section 4.2 presents the metaheuristic algorithms developed.

First, the neighbourhood structure is presented. Afterwards, Variable Neighbourhood

Search (VNS) and Late Acceptance Hill-Climbing (LAHC) based algorithms are pro-

posed. Section 4.3 presents a problem-speci�c Fix-and-Optimize matheuristic to handle

this problem, an enhanced version of such a matheuristic, and a Local Branching al-

gorithm. The Fix-and-Optimize algorithm was also combined with a metaheuristic to

compose a hybrid solver.

4.1 Constructive Algorithm

The Kingston High School Timetabling Engine (KHE14) was used as a constructive

algorithm. KHE is a platform for handling instances of XHSTT and KHE14 is a version

of KHE incorporating several performance enhancements made by its author [43]. It

also provides a solver, that was used in this work to generate acceptable initial solutions

in short time [44]. KHE generates a solution through three steps: structural phase, time

assignment phase, and resource assignment phase. For the sake of brevity, only a brief

description of the method is provided in sequence. For additional information, please

refer to [43, 44].

44

CHAPTER 4. ALGORITHMS 45

At the beginning of the structural phase, an initial solution is built with no times

or resources assigned. In this step, events are split into sub-events, whose durations

depend on split event constraints, and the sub-events (or meets) are grouped into sets

called nodes. Sub-events derived from the same event are nested in the same node. Sub-

events whose original events are connected by spread events or avoid split assignment

constraints also lie in the same node. Events connected by link event constraints have

their meets connected in such a way that the time assigned to one of these meets is

also extended to the other connected meets. Each meet also contains a set of times

called time domain, which de�nes the times that could be assigned to the meet. Time

domains are chosen based on preferred time constraints. A meet contains one task for

each demanded resource in the event that it was derived from. Each task also contains

a set of resources of the proper type called resource domain. The resources available on

resource domain are based on preferred resource constraints. Pre-assigned times and

resources are also assigned in this step [43].

In time assignment phase, a time is assigned for each meet. First, a layer, which is a

set of nodes containing meets preassigned to a given resource, is built for each resource

in which a hard avoid clashes constraint applies. Then, the layers are sorted in such

a way that the hardest layers (layers with less available choices for assignment) come

�rst, and the times are assigned to the meets of each layer, one by one. This assignment

is done through a minimum-cost matching between meets of a given layer and times.

Each edge of the graph has the cost equals to the objective function impact of this

assignment.

Finally, the resources are assigned in the resource assignment phase. For each re-

source type, one of two procedures is executed: (i) if the resource assignment for this

resource type is constrained by avoid split assignment constraints, a resource packing

algorithm is invoked; (ii) otherwise, a simple heuristic is used. These two procedures

can be described as follows:

CHAPTER 4. ALGORITHMS 46

• The packing of a resource consists on assigning tasks to the resource in such a

way that the solution cost is kept as low as possible. It is accomplished through

maximum use of the resource, under its workload limits. The resources are placed

in a priority queue, in which more demanded resources are prioritized. At each

iteration, a resource is dequeued and processed.

• The simple heuristic consists on assigning the resource that minimizes the objec-

tive function for each task, from the most constrained to the least one.

It is possible to estimate the amount of tasks whose resource assignment is impossible

through a maximum matching in an unweighed bipartite graph (tasks are demand nodes

and resources are supply nodes).

4.2 Metaheuristics

Descriptions of the developed metaheuristics, VNS, LAHC, and proposed variants

are presented in this section, along with the six-move neighbourhood structure employed

for the metaheuristics.

4.2.1 Neighbourhood Structure

The neighbourhood structure N (s) is composed of six moves (or neighbourhood

functions)1. This neighbourhood structure is very similar to the one proposed by the

winner of ITC2011 [34, 35], except that the move Permute Resources was removed. This

move is computationally expensive and it does not provide signi�cant improvement on

the candidate solutions. The functions considered are presented in sequence.

1In terms of notation, a neighbourhood function k is denoted by Nk(s).

CHAPTER 4. ALGORITHMS 47

1. Event Swap (ES): Two events e1 and e2 are selected and their timeslots t1 and t2

are swapped. Table 4.1 presents an example of this move.

Table 4.1: Example of Event Swap neighbourhood.
Class A Class A

Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri
Math1
Anna

Eng1
John

Math2
Anna

Phis1
Paul

Eng2
John

Math1
Anna

Span1
Gary

Math2
Anna

Phis1
Paul

Eng2
John

Math1
Anna

Eng1
John

Math2
Anna

Phis1
Paul

Eng2
John

ES
(Eng1,Span1)

Math1
Anna

Span1
Gary

Math2
Anna

Phis1
Paul

Eng2
John

Math1
Anna

Chem1
Sara

Geog2
Mark

Span1
Gary

Eng2
John

=⇒ Math1
Anna

Chem1
Sara

Geog2
Mark

Eng1
John

Eng2
John

Geog1
Mark

Chem1
Sara

His1
Mark

Span1
Gary

Phis2
Paul

Geog1
Mark

Chem1
Sara

His1
Mark

Eng1
John

Phis2
Paul

Geog1
Mark

Chem1
Sara

His1
Mark

His2
Mark

Geog1
Mark

Chem1
Sara

His1
Mark

His2
Mark

2. Event Move (EM): An event e1 is moved from its original timeslot t1 to a new

empty timeslot t2. Table 4.2 presents an example of this move.

Table 4.2: Example of Event Move neighbourhood.
Class A Class A

Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri
Math1
Anna

Eng1
John

Math2
Anna

Phis1
Paul

Eng2
John

Math1
Anna

Eng2
John

Math2
Anna

Phis1
Paul

Eng2
John

Math1
Anna

Eng1
John

Math2
Anna

Phis1
Paul

Eng2
John

EM
(Geog2,Fri5)

Math1
Anna

Eng1
John

Math2
Anna

Phis1
Paul

Eng2
John

Math1
Anna

Chem1
Sara

Geog2
Mark

Span1
Gary

Eng2
John

=⇒ Math1
Anna

Chem1
Sara

Span1
Gary

Eng2
John

Geog1
Mark

Chem1
Sara

His1
Mark

Span1
Gary

Phis2
Paul

Geog1
Mark

Chem1
Sara

His1
Mark

Span1
Gary

Phis2
Paul

Geog1
Mark

Chem1
Sara

His1
Mark

His2
Mark

Geog1
Mark

Chem1
Sara

His1
Mark

His2
Mark

Geog2
Mark

3. Event Block Swap (EBS): Similarly to ES move, the Event Block Swap swaps

the timeslots of two events e1 and e2. However, if the events have di�erent dura-

tions, e1 is moved to the last timeslot occupied by e2. This move allows timeslot

swaps without losing the allocation contiguity. Table 4.3 presents an example of

this move.

CHAPTER 4. ALGORITHMS 48

Table 4.3: Example of Event Block Swap neighbourhood.
Class A Class A

Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri
Math1
Anna

Eng1
John

Math2
Anna

Phis1
Paul

Eng2
John

Math1
Anna

Eng2
John

Geog2
Mark

Phis1
Paul

Eng2
John

Math1
Anna

Eng1
John

Math2
Anna

Phis1
Paul

Eng2
John

EBS
(Math2,Geog2)

Math1
Anna

Eng1
John

Math2
Anna

Phis1
Paul

Eng2
John

Math1
Anna

Chem1
Sara

Geog2
Mark

Span1
Gary

Eng2
John

=⇒ Math1
Anna

Chem1
Sara

Math2
Anna

Span1
Gary

Eng2
John

Geog1
Mark

Chem1
Sara

His1
Mark

Span1
Gary

Phis2
Paul

Geog1
Mark

Chem1
Sara

His1
Mark

Span1
Gary

Phis2
Paul

Geog1
Mark

Chem1
Sara

His1
Mark

His2
Mark

Geog1
Mark

Chem1
Sara

His1
Mark

His2
Mark

4. Resource Swap (RS): Two resources r1 and r2, assigned to events e1 and e2, are

swapped. Such an operation is only allowed if the resources r1 and r2 are of the

same type (i.e. both have to be teachers). Table 4.4 presents an example of this

move.

Table 4.4: Example of Resource Swap neighbourhood.
Class A Class A

Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri
Math1
Anna

Eng1
John

Math2
Anna

Phis1
Paul

Eng2
John

Math1
Anna

Eng1
John

Math2
Anna

Phis1
Sara

Eng2
John

Math1
Anna

Eng1
John

Math2
Anna

Phis1
Paul

Eng2
John

RS
(Chem1,Phis1)

Math1
Anna

Eng1
John

Math2
Anna

Phis1
Sara

Eng2
John

Math1
Anna

Chem1
Sara

Geog2
Mark

Span1
Gary

Eng2
John

=⇒ Math1
Anna

Chem1
Paul

Geog2
Mark

Span1
Gary

Eng2
John

Geog1
Mark

Chem1
Sara

His1
Mark

Span1
Gary

Phis2
Paul

Geog1
Mark

Chem1
Paul

His1
Mark

Span1
Gary

Phis2
Paul

Geog1
Mark

Chem1
Sara

His1
Mark

His2
Mark

Geog1
Mark

Chem1
Paul

His1
Mark

His2
Mark

5. Resource Move (RM): The resource r1, assigned to an event e1, is replaced by a

new resource r2, randomly selected from the available resources that can be used

to attend e1. Table 4.5 presents an example of this move.

CHAPTER 4. ALGORITHMS 49

Table 4.5: Example of Resource Move neighbourhood.
Class A Class A

Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri
Math1
Anna

Eng1
John

Math2
Anna

Phis1
Paul

Eng1
John

Math1
Anna

Eng2
John

Math2
Anna

Phis1
Paul

Eng2
John

Math1
Anna

Eng1
John

Math2
Anna

Phis1
Paul

Eng2
John

RM
(Span1,Kate)

Math1
Anna

Eng1
John

Math2
Anna

Phis1
Paul

Eng2
John

Math1
Anna

Chem1
Sara

Geog2
Mark

Span1
Gary

Eng2
John

=⇒ Math1
Anna

Chem1
Sara

Geog2
Mark

Span1
Kate

Eng2
John

Geog1
Mark

Chem1
Sara

His1
Mark

Span1
Gary

Phis2
Paul

Geog1
Mark

Chem1
Sara

His1
Mark

Span1
Kate

Phis2
Paul

Geog1
Mark

Chem1
Sara

His1
Mark

His2
Mark

Geog1
Mark

Chem1
Sara

His1
Mark

His2
Mark

Compatible: Tom Joey Kate Compatible: Tom Joey Gary

6. Kempe Move (KM): Two timeslots t1 and t2 are selected. The events assigned

to t1 and t2 are listed and represented as nodes in a graph. If two nodes (events)

n1 and n2 share resources, they are connected by an edge. Edges are created only

between nodes assigned in distinct timeslots. Therefore, the generated graph is

bipartite, and it is known as con�ict graph. Every edge in the con�ict graph

has a weight, which is the cost di�erence in the objective function assuming the

exchange of timeslots between the events in the pair (n1, n2); and, obviously, sub-

tracting the temporary penalty for the produced clash. Afterwards, the method

looks for the lowest cost path in the con�ict graph and it makes the exchange of

timeslots in the chain. This procedure is similar to the proposed by Tuga et al.

[74]. Figure 4.1 presents an example of this move.

When generating a random neighbour, the neighbourhood to be considered is cho-

sen according to the following probabilities: if the instance requires the assignment

of resources (i.e. there is at least one Assign Resource constraint), the probabilities

are: ES = 0.20, EM = 0.38, EBM = 0.10, RS = 0.20, RM = 0.10, and KM = 0.02.

Otherwise, the neighbourhoods RS and RM are not used and the probabilities are: ES

= 0.40, EM = 0.38, EBS = 0.20, and KM = 0.02. These probabilities were empirically

adjusted. Higher probabilities were given to moves that take a short time and have a

good potential to improve the solution, while smaller probabilities were set to the ones

that take more processing time.

CHAPTER 4. ALGORITHMS 50

Tue2

 2

 -5

 -3

 0

 -5

 2

KM
(Tue2, Wed4)

Eng1

ClassA

John

Geog1

ClassB

Mark

Phis1

ClassC

Kate

Math1

ClassD

Anna

Eng2

ClassE

Tom

His1

ClassB

Rose

Geog1

ClassA

Mark

Eng2

ClassC

John

Span1

ClassD

Tom

Eng2

ClassE

Adam

Geog1

ClassB

Mark

Eng1

ClassA

John

Phis1

ClassC

Kate

Span1

ClassD

Tom

Eng2

ClassE

Adam

His1

ClassB

Rose

Geog1

ClassA

Mark

Eng2

ClassC

John

Math1

ClassD

Anna

Eng2

ClassE

Tom

Wed4 Tue2

 6

 2

Wed4

Figure 4.1: Example of Kempe Move.

4.2.2 Variable Neighbourhood Search

The Variable Neighbourhood Search algorithm was proposed by Mladenovic and

Hansen [52] and it consists in a local search method that explores the search space by

making systematic changes in the neighbourhood structures.

At each iteration, a neighbourhood structure k is selected according to the order

presented in Section 4.2.1. A random neighbour s
′ ∈ Nk(s) is generated in this neigh-

bourhood. Afterwards, a descent method is applied to s
′
. If the best solution found by

the descent method, s
′′
, is better than the best known solution, it is updated and the

neighbourhood structure is set to the �rst one again. Otherwise, the search continues in

the next neighbourhood structure. When the last neighbourhood structure (kmax = 6)

CHAPTER 4. ALGORITHMS 51

is explored, the search goes back to the �rst neighbourhood. This process continues

until a stop condition is met.

The descent method is a key component of the VNS algorithm. The ability to

quickly reach good local optima is critical to the success of the algorithm. Random

Non-Ascendent (RNA) movements were employed as the descent method, with the

stopping criterion of Itermax = 1, 000, 000 iterations without improvement. This value

was adjusted empirically. Algorithm 4 presents the implementation of the RNA method.

Algorithm 4: Developed implementation of RNA.
Input: Initial solution s, neighborhood function N (.), and obj. function f(.).
Output: Best solution s found.

1 Iter ← 0;
2 while Iter < IterMax and elapsedT ime < timeLimit do
3 Iter ← Iter + 1;
4 Generate a random neighbour s

′ ∈ N (s);
5 if f(s

′
) ≤ f(s) then

6 s← s
′
;

7 if f(s
′
) < f(s) then

8 Iter ← 0;

9 return s;

Finally, Algorithm 5 presents the basic implementation of VNS developed. The stop

condition adopted is a time limit. Some variants of VNS were implemented and they

are presented in the next subsections.

Reduced Variable Neighbourhood Search

A reduction to the original Variable Neighbourhood Search Method was also pro-

posed by Mladenovic and Hansen [52], in which there is no descent phase (Algorithm 5,

line 5) to improve the generated solution s
′
at each iteration. This may improve the VNS

performance in cases in which the complete exploration of the de�ned neighbourhoods is

excessively expensive. This reduction is called Reduced Variable Neighbourhood Search

(RVNS).

CHAPTER 4. ALGORITHMS 52

Algorithm 5: Developed implementation of VNS.
Input: Initial solution s, neighborhood function N (.), and obj. function f(.).
Output: Best solution s found.

1 while elapsedT ime < timeLimit do
2 k ← 1;
3 while k ≤ kmax do
4 Generate a random neighbour s

′ ∈ Nk(s);
5 s

′′ ← descentMethod(s
′
) (Alg. 4);

6 if f(s
′′
) ≤ f(s) then

7 s← s
′′
;

8 k ← 1;

9 else
10 k ← k + 1;

11 return s;

Sequential Variable Neighbourhood Descent

Another variation of the original VNS method is the Sequential Variable Neighbour-

hood Descent (SVND) [39]. The main di�erence between SVND and the original VNS is

that it explores only a subset of the available neighbourhood structure at each iteration

of the descent phase, instead of the whole set. In the present implementation of SVND,

the descent method at each iteration is executed considering only one neighbourhood

structure k at a time (s
′′ ← descentMethodk(s

′
)).

Skewed Variable Neighbourhood Search

If very large neighbourhoods are considered in VNS, the information related to the

current best optima dissolves, and the algorithm degenerates into multistart [38]. The

Skewed Variable Neighbourhood Search (SVNS) was proposed to handle with such a

problem. In this variant, it is adopted a relaxed rule to accept the candidate solution

s
′′
. This relaxed rule can accept a worse solution based on its distance to the current

incumbent, as follows: f(s
′′
)− α× ρ(s, s

′′
), in which ρ(s, s

′′
) is the distance between s

and s
′′
, and α is a parameter to be set. To compute the distance between two solutions,

CHAPTER 4. ALGORITHMS 53

the following metric was adopted: for each solution, a string with n positions is built

(n is the number of events). In each position i, there is an ordered pair indicating

the meeting and tasks which are associated to event i. Then, ρ(s, s
′′
) is the Hamming

distance between these two strings. α was empirically set to 1.0.

4.2.3 Late Acceptance Hill-Climbing

The Late Acceptance Hill-Climbing metaheuristic was recently proposed by Burke

and Bykov [12, 14]. This algorithm is an adaptation of the classical Hill-Climbing

method. It relies on comparing a new candidate solution with the last l-th solution

considered in the past, in order to accept or to reject it. Note that the candidate solution

may be accepted even if it is worse than the current solution since it is compared to

the best solution of l iterations before.

This metaheuristic was created with three goals in mind: (i) to be an one-point

search procedure that does not employ an arti�cial cooling schedule, like Simulated

Annealing; (ii) to e�ectively use the information collected during previous iterations of

the search, and; (iii) to employ a simple acceptance mechanism (i.e. almost as simple

as Hill-Climbing) [13]. Some successful examples of application of LAHC can be found

in [2, 59, 76].

In this method, a vector ~p = [~p0, . . . , ~pl−1] with costs of previous solutions is stored.

Initially this list is �lled with the cost of the initial solution s: ~pk ← f(s) ∀k ∈

{0, ..., l − 1}. At each iteration i, a candidate solution s
′
is generated. The candidate

solution is accepted if its cost is less or equal to the cost stored on the i mod l position

of ~p. Moreover, if this solution is better than the best solution s∗ found so far, a new

incumbent solution is stored. Afterwards, the position v = i mod l of ~p is updated:

~pv ← f(s
′
). This process repeats until a stopping condition is met. The developed

implementation of the LAHC is illustrated in Algorithm 6. Note that time limit was

considered as the stopping condition for the algorithm. Parameter l was set to 500 for

all experiments using LAHC. This value was empirically adjusted.

CHAPTER 4. ALGORITHMS 54

Algorithm 6: Developed implementation of LAHC.
Input: Initial solution s, �tness list size l, neighborhood function N (.), and

obj. function f(.).
Output: Best solution s∗ found.

1 ~pk ← f(s) ∀k ∈ {0, ..., l - 1};
2 s∗ ← s;
3 i← 0;
4 while elapsedT ime < timeLimit do
5 Generate a random neighbour s

′ ∈ N (s);
6 v ← i mod l;
7 if f(s

′
) ≤ ~pv then

8 s← s
′
;

9 if f(s) < f(s∗) then
10 s∗ ← s;

11 ~pv ← f(s);
12 i← i+ 1;

13 return s∗;

Since it is relatively recent, variants of the LAHC metaheuristic were not extensively

explored yet. Therefore, the combination of LAHC with other methods and strategies

is an open �eld for experimentation [13]. Two new variants of LAHC are proposed in

this work: Stagnation Free LAHC (SF-LAHC), and Simulated Annealing - Stagnation

Free LAHC. These heuristics are described below.

Stagnation Free LAHC

In late stages of the LAHC, it is often hard to improve the current solution since

the algorithm usually has a list with all l positions occupied by the same cost value.

This behavior can make the LAHC incapable of escaping from local optima, because

worse solutions are never accepted. A new variation of the LAHC, so-called Stagnation

Free LAHC or simply SF-LAHC, is proposed to handle such situations.

In SF-LAHC method, the algorithm reheats the system when it reaches a stagnation

condition. In the proposed implementation, the reheat consists of retrieving the vector

of costs from the last time in which one improvement occurred, denoted by ~p
′
. It

CHAPTER 4. ALGORITHMS 55

means that various worsening moves may become acceptable after this list update. The

algorithm is considered on stagnation when it performs n iterations without improve-

ment. The author suggests to set n as a function of l, in order to simplify the parameter

tuning process. The Stagnation Free variant of LAHC is presented in Algorithm 7. In

the experiments, it was set n = 1, 000× l.

Algorithm 7: Proposed Stagnation Free LAHC approach.
Input: Initial solution s, �tness list size l, neighborhood function N (.), and

obj. function f(.).
Output: Best solution s∗ found.

1 ~pk ← f(s) ∀k ∈ {0, ..., l - 1};
2 ~pk ← ~p

′

k ;
3 s∗ ← s;
4 i← 0;
5 n← 1, 000× l;
6 while elapsedT ime < timeLimit do
7 Generate a random neighbour s

′ ∈ N (s);
8 v ← i mod l;
9 if f(s

′
) ≤ ~pv then

10 s← s
′
;

11 if f(s) < f(s∗) then
12 s∗ ← s;
13 ~p

′ ← ~p;
14 i← 0;

15 ~pv ← f(s);
16 i← i+ 1;
17 if i = n then
18 ~p← ~p

′
;

19 i← 0;

20 return s∗;

Simulated Annealing - SF-LAHC

Proposed by Kirkpatrick et al.[45], the metaheuristic Simulated Annealing (SA) is a

probabilistic method based on an analogy to thermodynamics, simulating the cooling of

a set of heated atoms. This technique starts its search from an initial solution. The main

CHAPTER 4. ALGORITHMS 56

procedure consists of a loop that randomly generates, at each iteration, one neighbour

s
′
of the current solution s. Movements are probabilistically selected considering a

temperature T and the cost variation obtained with the move, ∆.

This algorithm was part of all ITC winner solvers [34, 46, 54]. Therefore, besides

being explored as a standalone solver, it was evaluated in a composed approach with the

SF-LAHC algorithm. Since Simulated Annealing performance is not strongly a�ected

by the �tness of the initial solution, it was proposed a mixed algorithm, with the

Simulated Annealing algorithm being applied to the initial solution, and the SF-LAHC

method being executed further, to re�ne the solution obtained by SA.

The implementation of Simulated Annealing used in this work is described in Algo-

rithm 8. Parameters were empirically set as α = 0.97, T0 = 1 and SAmax = 10, 000.

Algorithm 8: Developed implementation of SA.
Input: Initial solution s, max. iterations for each temp. SAmax , cooling rate

α, initial temp. T0, neighborhood function N (.), and obj. function f(.).
Output: Best solution s∗ found.

1 s∗ ← s;
2 IterT ← 0; T ← T0;
3 while elapsedT ime < timeLimit do
4 while IterT < SAmax do
5 IterT ← IterT + 1;
6 Generate a random neighbour s

′ ∈ N (s);
7 ∆ = f(s

′
)− f(s);

8 if ∆ < 0 then
9 s← s

′
;

10 if f(s
′
) < f(s∗) then

11 s∗ ← s
′
;

12 else
13 Take x ∈ [0, 1];
14 if x < e−∆/T then
15 s← s

′
;

16 T ← α× T ;
17 IterT ← 0;

18 return s∗;

CHAPTER 4. ALGORITHMS 57

4.3 Matheuristics

Matheuristics are heuristic algorithms made by the cooperation between metaheuris-

tics and mathematical programming methods (MP) [10, 50, 63]. Matheuristic strategies

are often classi�ed into hard or soft �xation of variables. In the hard-�xation strategy,

a set of variables is �xed to their value in the incumbent solution and another set is op-

timized per iteration. In the soft-�xation strategy, an additional constraint states that

at most a number of variables may change their value per iteration [20]. Both �xation

strategies are explored in this thesis. Fix-and-Optimize is considered for hard-�xation

of variables and Local Branching for soft-�xation. A variation of the Fix-and-Optimize

strategy is also proposed in this thesis.

4.3.1 Fix-and-Optimize

In the Fix-and-Optimize (FixOpt) approach, a metaheuristic works at the master

level, controlling low level local search procedures. These local searches are reduced

Mixed Integer Programming (MIP) models, in which a subset of variables is �xed to

their current values in the incumbent solution, and the remaining variables of the model

can be freely modi�ed by the MIP solver.

In the present implementation, the main procedure is similar to the proposed by

Sørensen and Stidsen [71]. Considering that X represents the set of decision variables

and s represents the incumbent solution, the proposed Fix-and-Optimize approach is

presented in Algorithm 9.

CHAPTER 4. ALGORITHMS 58

Algorithm 9: Proposed problem-speci�c Fix-and-Optimize approach.
Input: XHSTT instance P , initial solution s, number of resources n, set of

resources R, and maximum optimal iterations in a row optInRow.
Output: Best solution s found.

1 M ← Load MIP model for instance P and solution s;
2 X ← Load values for variables from s;
3 optIter ← 0;
4 while elapsedT ime < timeLimit do
5 V ← ∅;
6 count← 0;
7 while count < n do
8 Randomly select a resource ρ ∈ R;
9 foreach variable xse,t,er,r ∈ X do
10 if r = ρ then
11 V ← V ∪ {xse,t,er,r};

12 count← count + 1;

13 Fix variables X \ V in M to their current value;
14 (s, status)← Solve M with short time limit;
15 Release �xed variables in M ;
16 if status = “Optimal” then
17 optIter ← optIter + 1;
18 if optIter = optInRow then
19 n← n+ 1;
20 optIter ← 0;

21 else if status = “TimeLimit” and n > 1 then
22 n← n− 1;

23 return s;

CHAPTER 4. ALGORITHMS 59

The algorithm takes as input an instance of XHSTT problem P and an initial

solution s (lines 1 and 2). In line 3, optIter ← 0 counts the number of consecutive

iterations achieving the optimal solution. In line 5, an empty set (V) of variables is

created. While the number n of resources was not ful�lled yet, a resource ρ is randomly

selected (line 8). Then, for each variable xse,t,er,r ∈ X , if the resource r in xse,t,er,r is the

same as selected resource ρ, variable xse,t,er,r is added to V set (lines 10 and 11). In line

13, all variables except the selected ones have their values �xed. In line 14, the MIP

solver is invoked with a short time limit. In sequence, all variables are un�xed for the

next iteration of the algorithm. Lines 16 to 22 are related to the automatic adjust of n

value throughout the optimization process. If optIter reaches the maximum number of

consecutive iterations achieving the optimal solution (given by parameter optInRow),

n is increased by one (line 19). Else if the solver could not �nish due to the given time

limit (line 21) the number of resources n is reduced by one (line 22).

To perform the computational experiments, the initial number of resources to be

selected per iteration was empirically set as n = 5. Although an initial value for n

has to be provided, n is automatically adjusted throughout the optimization process.

The maximum of iterations in a row reaching the optimal solution before increasing n,

optInRow, was also set as 5. Thus, whenever �ve consecutive iterations of the Fix-and-

Optimize algorithm return the optimal solution, n will be increased by one. For line

13, a short limit of one twentieth of the total available time was considered for each

iteration. Usually, the IP solver takes only a few seconds per iteration.

Table 4.6 presents an example of this MIP neighbourhood. Suppose a tiny timetabling

problem with only one class (Class A) and three teachers (John, Anna, and Kate). Con-

sider also that it is not desirable that teachers were involved in lectures at more than

two days. In this example, resources Anna and Kate are randomly selected to have their

schedule optimized in one iteration of Fix-and-Optimize. Coloured events indicate that

they are unlocked to be optimized by the IP solver. Anna's slots are blue while Kate's

are red. On the left side of the image one can see that both Anna and Kate are involved

CHAPTER 4. ALGORITHMS 60

in lectures at three days. On the right side it is presented the resulting solution after

solving the IP model with all variables related to resources Anna and Kate un�xed.

Note that it would be hard to remove this constraint violation through the neighbour-

hoods considered in this work (Section 4.2.1): it would be necessary a large, and lucky,

chain of Event Swap moves.

Table 4.6: Example of one iteration of the proposed Fix-and-Optimize approach.
Class A Class A

Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri
Eng1
John

Span2
John

Math1
Anna

Chem1
Kate

Math2
Anna

Eng1
John

Span2
John

Math1
Anna

Math2
Anna

Chem1
Kate

Eng1
John

Span2
John

Math1
Anna

Chem1
Kate

Phi1
Kate

Fix-Opt
{Anna,Kate}

Eng1
John

Span2
John

Math1
Anna

Math3
Anna

Chem2
Kate

Span1
John

Eng2
John

Bio1
Kate

Prog1
Anna

Math3
Anna

=⇒ Span1
John

Eng2
John

Bio1
Kate

Prog1
Anna

Phi1
Kate

Span1
John

Eng2
John

Bio1
Kate

Prog1
Anna

Phis2
Kate

Span1
John

Eng2
John

Bio1
Kate

Prog1
Anna

Phis2
Kate

4.3.2 Defect-Oriented Fix-and-Optimize

A variation of the �x-and-optimize algorithm is also proposed in this work. This vari-

ation, here named Defect-Oriented Fix-and-Optimize (DO-FixOpt), focuses on smarter

ways of selecting the variables to be freed at each iteration of the �x-and-optimize

process.

A graph G = (V , E) is created, in which the set of vertex v ∈ V represents the

resources (V ≡ R) and the set of edges e ∈ E represents the relation between these

resources. If two resources r1 and r2 share at least one preassigned event in common,

there will be an edge (r1, r2) ∈ E connecting them. These edges also have weights

we ∈ N, indicating how strong is the relation between the resources they connect.

we is equal to the sum of the durations of all preassigned events that r1 and r2 have

in common. Each vertex is associated to an integer value br ∈ N that indicates the

objective function penalty related to the resource r. This value also takes into account

penalties related to the events (and their event groups) that r is preassigned to. To

promote some randomness to this process, a parameter b ∈ N is added to br.

CHAPTER 4. ALGORITHMS 61

Figure 4.2 presents an example of such a graph, in which the size of the vertex is

directly proportional to br, and we is represented on each edge. In this example, it is

easy to note that r2 and r9 have higher probability of being selected. Given that r9

is selected, for having shared events whose total duration is 10, r6 is more likely to be

selected together with r9 than r7 and r8.

r1

r2

r3

r4

r5

r6

r7

r8

r9

5

2

5

4

1

5

10

2

6

42 4

4

Figure 4.2: Example of graph of resources for the Defect-Oriented Fix-and-Optimize
algorithm.

Having such a graph, instead of randomly selecting a resource as it is done in line

8 of Algorithm 9, the resources will be selected based on br and wr. This selection

is performed through a roulette wheel method (as higher br is, more likely is r to be

selected). Whenever a vertex (resource) is selected, the resources that it is connected

to are also selected. If the number of adjacent vertices is not enough to ful�ll the

number of resources to be selected (|adjr| ≤ n− count), all adjacent vertex are selected;

otherwise, a tournament selection is applied to select the remaining number of resources

(n−count). In the tournament, the weight wr of the edges is compared to decide which

resource to take.

CHAPTER 4. ALGORITHMS 62

Parameter b plays an important role since it controls the randomness of the resource

selection process. On the one hand, if b → ∞, the selection is completely randomized

(just as the standard Fix-and-Optimize). On the other hand, if b = 0 the resources

having heavier violations will be selected more often than the others. Furthermore,

resources with no violations will never be selected. The problem that arises when b = 0

is that a resource may have a heavy penalty but it might be not possible to �x it.

Having this in mind, b was set to 1 for all the computational experiments in this thesis.

Algorithm 10 presents the pseudo-code of the proposed Defect-Oriented Fix-and-

Optimize approach for timetabling. The main di�erence from Algorithm 10 to 9 is the

addition of lines 10 to 17 to select more e�ciently the resources to have their variables

released. It is important to highlight that this concept can be easily extended to other

combinatorial optimization problems.

4.3.3 Local Branching

The Local Branching (LB) strategy was proposed by Fischetti and Lodi [30]. It is

based on the soft �xation of variables in a Mixed Integer Programming model. The

soft �xation of variables is achieved by, given an initial solution, adding to the model

a constraint stating that at least k% of the variables must keep its current value.

Therefore, a fraction of the model is �xed but there is no constraint regarding which

variables shall be kept unchanged. Suppose one is given a 0-1 solution s̄ of a MIP

problem P with n variables and at least 90% of the variables must keep their values.

The soft �xing constraint is:

n∑
j=1

s̄j × sj ≥ d0.9
n∑
j=1

s̄je (4.1)

Let B denote the set of binary variables of a MIP problem. Then S̄ := {j ∈ B : s̄j =

1} is the binary support of a solution s̄. For a given integer parameter k, the k-OPT

CHAPTER 4. ALGORITHMS 63

Algorithm 10: Proposed Defect-Oriented Fix-and-Optimize approach.
Input: XHSTT instance P , init. solution s, num. of resources n, set of

resources R, max. optimal iterations in a row optInRow, and min.
arti�cial cost b.

Output: Best solution s∗ found.
1 s∗ ← s;
2 M ← Load MIP model for instance P and solution s;
3 X ← Load values for variables from s;
4 G = {V , E , b, w} ← Generate graph of resources considering b ;
5 optIter ← 0;
6 while elapsedT ime < timeLimit do
7 count← 0;
8 R′ ← ∅;
9 while count < n do
10 Select a resource ρ ∈ R in a roulette wheel according to bρ ;
11 R′ ← R′ ∪ {ρ};
12 if |adjρ| ≤ n− count then
13 R′ ← R′ ∪ {adjρ};
14 else
15 Radj ← Select n− count resources in |adjρ| by tournament;
16 R′ ← R′ ∪Radj;

17 count← count + 1;

18 V ← ∅;
19 foreach variable xse,t,er,r ∈ X do
20 foreach r

′ ∈ R′ do
21 if r = r

′
then

22 V ← V ∪ {xse,t,er,r};

23 Fix variables X \ V in M to their current value;
24 (s, status)← Solve M with short time limit;
25 Release �xed variables in M ;
26 if f(s) < f(s∗) then
27 s← s∗;
28 Update G according to the violations in s∗;

29 if status = “Optimal” then
30 optIter ← optIter + 1;
31 if optIter = optInRow then
32 n← n+ 1;
33 optIter ← 0;

34 else if status = “TimeLimit” and n > 1 then
35 n← n− 1;

36 return s∗;

CHAPTER 4. ALGORITHMS 64

neighbourhood N (s̄, k) is de�ned as the set of feasible solutions of P satisfying the

additional local branching constraint:

∆(s, s̄) :=
∑
j∈S̄

(1− s̄j) +
∑
j∈B\S̄

sj ≤ k (4.2)

where the two terms in left-hand side count the number of binary variables �ipping

their value (with respect to s̄) either from 1 to 0 or from 0 to 1, respectively.

Since, in the considered IP model for XHSTT, the cardinality of the binary support

of any feasible solution of P is a constant, this constraint was more conveniently written

in its equivalent �asymmetric� form

∆(s, s̄) :=
∑
j∈S̄

(1− s̄) ≤ k (4.3)

The idea is that the neighbourhood N (s̄, k) corresponding to the left branch must

be �su�ciently small� to be optimized within short time, but still �large enough� to

likely contain better solutions than s.

Fischetti and Lodi [30] also proposed a heuristic scheme based on local branching.

Algorithm 11 presents the developed implementation of a local branching based heuristic

for educational timetabling.

Line 1 adds a branching constraint to the problem P. In line 3, the time limit for

the solver is set according to the given parameter. In line 4, the problem P is solved.

Since a feasible solution is taken as input, only two status can arrive from the solver:

OPTIMAL : The model has been solved to optimality within the given timeLimitIt.

In such a case, if the objective function of the solution found is better than

the overall best (line 6), the best solution is updated (lines 7 and 8); otherwise,

parameter k is increased (line 10) and, if diversi�cation is active, the solution

CHAPTER 4. ALGORITHMS 65

Algorithm 11: Implementation of local branching based search.
Input: Integer programming problem P, initial solution s,
neighborhood size k, and timeLimitIt per iteration.
Output: Best solution s∗ found.

1 Add branching constraint ∆(s, s̄) ≤ k to P;
2 while elapsedT ime < timeLimit do
3 Set the time limit of the solver to timeLimitIt;
4 (s, status)← Solve P;
5 if status = “Optimal” then
6 if f(s) < f(s∗) then
7 best← f(s);
8 s∗ ← s;

9 else
10 k ← k + dk

2
e;

11 if diversify then
12 Set solution limit to one to the next iteration;
13 diversify ← false;

14 else
15 diversify ← true;

16 Reverse last local branching const. into ∆(s, s̄) ≥ k + 1;
17 s̄← s;
18 Add branching constraint ∆(s, s̄) ≤ k to P;
19 else if status = “TimeLimit” then
20 if f(s) < f(s∗) then
21 s∗ ← f(s);
22 Remove last local branching constraint from P;

23 else
24 k ← k − dk

2
e;

25 s̄← s;
26 Add branching constraint ∆(s, s̄) ≤ k to P;

27 return s∗;

CHAPTER 4. ALGORITHMS 66

limit of the solver is set to one to the next iteration. This is done to promote

diversi�cation to the search since taking the �rst integer solution of the solver is

likely to produce new solutions far enough from the incumbent. Later, the last

local branching constraint is removed (line 16), s̄ is updated (line 17) and a new

branching constraint is added to P (line 18).

TIMELIMIT : The execution of the model has been interrupted because it reached

the given timeLimitIt. In such a case, if the objective function of the solution

found is better than the overall best (line 20) the best solution is updated (lines 21

and 22) and the last local branching constraint is removed; otherwise, parameter

k is decreased. Later, solution s̄ is updated and a new branching constraint is

added (lines 25 and 26).

4.4 Hybrid Solver

The proposed matheuristics are also explored in this thesis as an extra re�nement

phase for the previously described metaheuristics. Therefore, this Hybrid Solver (HS)

is composed of three sequential steps: (i) the KHE solver is employed to generate a

reasonable initial solution; (ii) the metaheuristic algorithm is employed to improve this

solution as much as possible until stagnation, and; (iii) the matheuristic method is

employed to provide �ne improvement of the current solution until a timeout condi-

tion is reached. The matheuristic could be any of those proposed in this thesis; how-

ever, only Defect-Oriented Fix-and-Optimize (DO-FixOpt) was explored in this hybrid

setup. Original Fix-and-Optimize algorithm was not explored in this setup because

its extended version (DO-FixOpt) outperforms it, and Local Branching was also not

selected due to its poor performance (see Table 5.12). The metaheuristic is considered

stagnated when it reaches one twentieth of the available time without obtaining any

improvement. The SVNS algorithm was chosen to compose the metaheutristic compo-

nent of the hybrid solver due to its simplicity and superior performance when compared

CHAPTER 4. ALGORITHMS 67

with the other metaheuristics (see Table 5.10). A basic scheme of the hybrid solver,

which will be abbreviated either as SVNS-DO-FixOpt or HS throughout this thesis,

can be seen in Figure 4.3.

KHE

XHSTT Instance

Initial solution s

Best SVNS solution s*

SVNS

DO-Fix-Opt

Figure 4.3: Scheme of the proposed Hybrid Solver of metaheuristic and matheuristic.

Chapter 5

Computational Experiments

This chapter presents the results obtained by the formulations and algorithms de-

veloped in this thesis. Section 5.1 presents the computational environment in which

the experiments were performed. Section 5.2 describes the two instance sets considered

on computational experiments: XHSTT-ITC2011-hidden and XHSTT-2014. Section

5.3 presents the results of the mathematical programming formulations and techniques

proposed in this work. Section 5.4 presents the results of the heuristic algorithms de-

veloped in this thesis, grouped by technique: (i) VNS based, (ii) LAHC based, and

(iii) matheuristics. A discussion is conducted at the end of the presentation of each

result. Section 5.5 compares the best performing algorithms of each type and places

these results according to the state-of-art methods in the literature. Finally, Section

5.6 presents the new lower bounds and best known solutions obtained in this thesis.

The results are expressed as a pair (H,S), in which H and S denote the cost

of violating hard and soft constraints, respectively. When hard constraints are not

violated, only the cost of soft constraint violation is presented. The solvers implemented

in thesis, along with the solutions and reports obtained, can be found at the GOAL-

UFOP website1.

1http://www.goal.ufop.br/software/hstt/

68

http://www.goal.ufop.br/software/hstt/

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 69

5.1 Computational Environment

Computational experiments were performed on an Intel R© i7 4510U 2.6 Ghz PC

with 8GB of RAM under Ubuntu 12.04 operating system. The software was coded

in C++ and compiled using GCC 4.6.1. Results were validated by HSEval validator2.

The academic version of the state-of-the-art solver Gurobi 6.5.1, with default parameter

settings, was used to solve the mathematical programming models.

5.2 Instance Characterization

Two instance sets were considered to evaluate the algorithm and formulation per-

formances: (i) ITC2011 Hidden Instances, and; (ii) XHSTT-2014 Instances. Both sets

cover features of timetabling from several countries and have variate sizes, ranging from

instances demanding the assignment of 75 lectures to instances that demand the as-

signment of thousands of lectures and resources. These sets are described in the next

subsections.

5.2.1 ITC2011 Hidden Instances

ITC2011 Hidden Instances3 (XHSTT-ITC2011-hidden) was considered because it

was employed in the second phase of ITC2011. This phase dedicated to compare the al-

gorithms in the same computational environment and runtime. Moreover, this instance

set is currently the most used to evaluate algorithms for XHSTT in the literature. Ta-

ble 5.1 presents the main features of this instance set. An abbreviation on the instance

names was adopted to improve the readability. The abbreviation follows the pattern

XX-YY-ZZ where XX represents the country that the instance is from, YY identi�es

the education institution and ZZ represents the year of the timetabling problem. Coun-

try abbreviations are: AU - Australia, BR - Brazil, DK - Denmark, FI - Finland, ES -

2http://sydney.edu.au/engineering/it/~jeff/hseval.cgi
3https://www.utwente.nl/ctit/hstt/archives/XHSTT-ITC2011-hidden/

http://sydney.edu.au/engineering/it/~jeff/ hseval.cgi
https://www.utwente.nl/ctit/hstt/archives/XHSTT-ITC2011-hidden/

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 70

Spain, GR - Greece, IT - Italy, KS - Kosovo, NL - Netherlands, UK - United Kingdom,

US - United States of America and ZA - South Africa. There is an overlap of instances

in archives XHSTT-ITC2011-hidden and XHSTT-2014. Whenever the instance is the

same, the abbreviation will be identical.

Table 5.1: Features of XHSTT-ITC2011-hidden archive and adopted abbreviations.
Abbrev. Instance Times Resources Events Duration
BR-SA-00 BrazilInstance2 25 20 63 150
BR-DF-89 BrazilInstance3 25 24 69 200
BR-SM-00 BrazilInstance4 25 35 127 300
BR-SN-00 BrazilInstance6 25 44 140 350
FI-ES-12 FinlandElementarySchool 35 103 291 445
FI-SS-06 FinlandSecondarySchool2 40 79 469 566
GR-HS-11 AigioFirstHighSchool10-11 35 245 283 532
IT-I4-96 Italy_Instance4 36 99 748 1101
KS-PR-11 KosovaInstance1 62 164 809 1912
NL-KP-03 Kottenpark2003 38 587 1156 1203
NL-KP-05 Kottenpark2005 37 644 1235 1272
NL-KP-08 Kottenpark2008 40 126 1047 1118
NL-KP-09 Kottenpark2009 38 194 1166 1301
ZA-WD-09 Woodlands2009 42 70 278 1353
ES-SS-08 SpanishSchool 35 91 225 439
GR-P3-08 WesternGreeceUniversity3 35 25 210 210
GR-PA-08 WesternGreeceUniversity4 35 31 262 262
GR-P5-08 WesternGreeceUniversity5 35 24 184 184

Table 5.2 presents the occurrence of constraints and whether they are hard or soft

in each instance. A hard constraint is denoted as H and a soft constraint is identi�ed

as S. An empty cell means that the constraint is not present in that instance.

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 71

Table 5.2: Constraints in XHSTT-ITC2011-hidden instances.

Instance A
ss
ig
n
T
im
es

A
ss
ig
n
R
es
o
u
rc
es

P
re
fe
r
T
im
es

P
re
fe
r
R
es
o
u
rc
es

L
in
k
E
v
en
ts

O
rd
er

E
v
en
ts

S
p
re
a
d
E
v
en
ts

A
v
o
id

S
p
li
t
A
ss
ig
n
m
en
ts

D
is
tr
ib
u
te

S
p
li
t
E
v
en
ts

S
p
li
t
E
v
en
ts

A
v
o
id

C
la
sh
es

A
v
o
id

U
n
a
v
a
il
a
b
le
T
im
es

L
im
it
W
o
rk
lo
a
d

L
im
it
Id
le
T
im
es

L
im
it
B
u
sy

T
im
es

C
lu
st
er

B
u
sy

T
im
es

BR-SA-00 H S H S H H H S S

BR-DF-89 H S H S H H H S S

BR-SM-00 H S H S H H H S S

BR-SN-00 H S H S H H H S S

FI-ES-12 H H S H H H S

FI-SS-06 H H H H S S

GR-HS-11 H S H H H H H S S

IT-I4-96 H H H H H H S S

KS-PR-11 H H H S H H H H H

NL-KP-03 H H H H H H H H H S S S

NL-KP-05 H H H H H H H H H S S S

NL-KP-08 H H H H H H H H H H S

NL-KP-09 H H H H H H H H H S S

ZA-WD-09 H S S H S

ES-SS-08 H H H H H H H S S

GR-P3-08 H S H H H H

GR-PA-08 H H S H H H H

GR-P5-08 H S H H H H

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 72

5.2.2 XHSTT-2014 Instances

The other instances considered are those that compose the XHSTT-2014 set4. It

contains some of the XHSTT-ITC2011-hidden but includes several new instances, from

various countries, such as Australia, Denmark, and United States. This instance set

was also considered because it is the newest one and several researchers are using it to

record best known solutions and lower bounds. Table 5.3 presents the features of this

instance set.

Table 5.3: Features of XHSTT-2014 archive
Instance Times Resources Events Duration

AU-BG-98 40 131 387 1564

AU-SA-96 60 99 296 1876

AU-TE-99 30 76 308 806

BR-SA-00 25 20 63 150

BR-SM-00 25 35 127 300

BR-SN-00 25 44 140 350

DK-FG-12 50 438 1077 1077

DK-HG-12 50 694 1235 1235

DK-VG-09 60 262 918 918

ES-SS-08 35 91 225 439

FI-PB-98 40 111 387 854

FI-WP-06 35 41 172 297

FI-MP-06 35 64 280 306

GR-H1-97 35 95 372 372

GR-P3-10 35 114 178 340

GR-PA-08 35 31 262 262

IT-I4-96 36 99 748 1101

KS-PR-11 62 164 809 1912

NL-KP-03 38 587 1156 1203

NL-KP-05 37 644 1235 1272

NL-KP-09 38 194 1148 1274

UK-SP-06 25 202 1227 1227

US-WS-09 100 242 628 6354

ZA-LW-09 148 37 185 838

ZA-WD-09 42 70 278 1353

Table 5.4 details the constraints considered in each instance.
4https://www.utwente.nl/ctit/hstt/archives/XHSTT-2014/

https://www.utwente.nl/ctit/hstt/archives/XHSTT-2014/

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 73

Table 5.4: Presence of constraints in XHSTT-2014 instances

Instance A
ss
ig
n
T
im
es

A
ss
ig
n
R
es
o
u
rc
es

P
re
fe
r
T
im
es

P
re
fe
r
R
es
o
u
rc
es

L
in
k
E
v
en
ts

O
rd
er

E
v
en
ts

S
p
re
a
d
E
v
en
ts

A
v
o
id

S
p
li
t
A
ss
ig
n
m
en
ts

D
is
tr
ib
u
te

S
p
li
t
E
v
en
ts

S
p
li
t
E
v
en
ts

A
v
o
id

C
la
sh
es

A
v
o
id

U
n
a
v
a
il
a
b
le
T
im
es

L
im
it
W
o
rk
lo
a
d

L
im
it
Id
le
T
im
es

L
im
it
B
u
sy

T
im
es

C
lu
st
er

B
u
sy

T
im
es

AU-BG-98 H H H H H S H H H H H H

AU-SA-96 H H H H H S S H H H H H S

AU-TE-99 H H H H S S H H H H H S

BR-SA-00 H H H S H H H S S

BR-SM-00 H H H S H H H S S

BR-SN-00 H H H S H H H S S

DK-FG-12 H H H S H H S S S

DK-HG-12 H H H S H S S H

DK-VG-09 H H H S H S S S

ES-SS-08 H H H H H H H S S

FI-PB-98 H H H H H H S S

FI-WP-06 H H H H H S S

FI-MP-06 H H H H H H S S

GR-HI-97 H H H H H

GR-P3-10 H S H H H H H S S

GR-PA-08 H H S H H S H

IT-I4-96 H H H H H H S S S

KS-PR-11 H H H S H H H H H

NL-KP-03 H H H H H H H H H S S S

NL-KP-05 H H H H H H H H H S S S

NL-KP-09 H H H H H H H H H S S

UK-SP-06 H H H H H S

US-WS-09 H H S S S H H

ZA-LW-09 H H S S H

ZA-WD-09 H S S H H S

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 74

5.3 Formulation Results

This section presents the results of the proposed mathematical programming for-

mulations and techniques presented in the Chapter 3. Initially a comparison between

the original formulation F1 and the proposed alternative formulation F2 is performed.

In sequence, the e�ectiveness of the proposed Dantzig-Wolfe Column Generation and

Cut-and-Solve approaches are evaluated.

5.3.1 Comparison between F1 and F2

The formulations F1 and F2 are compared in this subsection. First, the e�ectiveness

of each proposed cut is evaluated. Further, the dimensions of the resulting mathematical

programming models are compared. At last, the results of the linear relaxation and of

the integer programming model for both F1 and F2 are compared.

Cut E�ectiveness

Table 5.5 presents, for each cut, whether its addition to F1 changes the optimal

solution of the linear relaxation of the model or not (i.e. whether isolated cuts of

this type were found). Each entry in the table represents the execution of the linear

relaxation of F1 applying the refereed cut on it. The cuts were ordered from the one

that was e�ective to most instances to the one that was e�ective to least instances. The

following abbreviations were used: Number of Busy Times Cut (NBT), Link X and Y

Cut (LXY), Multi-commodity Flow (MCF), Link Y and Q Cut (LYQ), and Cluster

Busy Times Cut (CBT).

From the analysis of Table 5.5, it can be concluded that NBT and LXY were the most

e�ective cuts, improving the linear relaxation of all instances considered. NBT a�ects

variables qr,t, which are essential to calculate resource-related constraint penalties. LXY

plays a central role since variables yse,t de�ne the time assignment of the events and

it provides a stronger link within the main variable, xse,t,er,r. MCF does not a�ect

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 75

Table 5.5: E�ectiveness of each cut over XHSTT-ITC2011-hidden archive.
Instance NBT LXY MCF LYQ CBT
BR-SA-00
BR-DF-89
BR-SM-00
BR-SN-00
FI-ES-12
FI-SS-06
GR-HS-11
IT-I4-96
KS-PR-11
NL-KP-03
NL-KP-05
NL-KP-08
NL-KP-09
ZA-WD-09
ES-SS-08
GR-P3-08
GR-PA-08
GR-P5-08

instances FI-ES-12, ZA-WD-09, and ES-SS-08. Indeed, MCF strengthens the de�nition

of Limit Idle Times constraints and this constraint does not apply to these instances.

LYQ is e�ective when the assignment and the preference of resources apply to the

instances. It was also e�ective to strengthen the link events speci�cation. As expected,

CBT only a�ects the instances that this constraint applies to. Finally, it is possible to

note that the features of the instances provide valuable information for selecting the

cuts to be active. Therefore the activation of cuts could be tailored according to the

features of the input problem.

Figure 5.1 presents the magnitude of lower bound improvement in the linear relax-

ation achieved by each cut. The following steps were executed to generate this data:

(i) the linear relaxation of the original formulation is executed for each instance; (ii)

the cuts were introduced, one by one, in a cumulative way and the partially improved

lower bound values were recorded; (iii) these values were normalized in such a way that

the lower bound provided by the original formulation is set as 0 and the lower bound

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 76

provided when all the proposed cuts are active is 1. Instances in which the optimal

lower bound is 0 or no improvement is achieved by the alternative formulation were not

included in the chart.

Figure 5.1: Normalized cumulative lower bound improvement in the linear relaxation
achieved by each cut.

0 0.2 0.4 0.6 0.8 1

BR-SA-00

BR-DF-89

BR-SM-00

BR-SN-00

IT-I4-96

NL-KP-05

NL-KP-08

NL-KP-09

ES-SS-08

GR-P3-08

Normalized cumulative lower bound improvement.

NBT LXY MCF LYQ CBT

In Figure 5.1, it is possible to observe how much each cut contributes to the lower

bound improvement achieved by the alternative formulation F2. NBT cuts increase

the lower bound in most of the instances, specially for the Dutch and the Italian ones.

LXY cuts were mostly e�ective in the Greek and Spanish instances, while MCF cuts

were mostly e�ective in the Brazilian ones. Although LYQ and CBT virtually did

not improve the lower bound, they were still considered on the alternative formulation

because they cut fractional solutions of the search space as could be seen in Table 5.5.

Since this lower bound improvement is cumulative, it is important to highlight that

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 77

these values of improvement would have been di�erent if another cut inclusion order

were adopted.

Model Dimensions

Figures 5.2, 5.3, and 5.4 represent, respectively, the number of variables, constraints,

and non-zeros of formulations F1 and F2 applied to the instances of XHSTT-ITC2011-

hidden archive.

Figure 5.2: Comparison of the number of variables of F1 and F2 for each instance in
XHSTT 2011 hidden.

0 1 2 3 4 5 6 7 8 9

·105

GR-P5-08

GR-PA-08

GR-P3-08

ES-SS-08

NL-KP-09

NL-KP-08

NL-KP-05

NL-KP-03

ZA-WD-09

KS-PR-11

IT-I4-96

GR-HS-11

FI-SS-06

FI-ES-12

BR-SN-00

BR-SM-00

BR-DF-89

BR-SA-00

Number of variables

F1

F2

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 78

Figure 5.3: Comparison of the number of constraints of F1 and F2 for each instance
in XHSTT 2011 hidden.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

·106

GR-P5-08

GR-PA-08

GR-P3-08

ES-SS-08

NL-KP-09

NL-KP-08

NL-KP-05

NL-KP-03

ZA-WD-09

KS-PR-11

IT-I4-96

GR-HS-11

FI-SS-06

FI-ES-12

BR-SN-00

BR-SM-00

BR-DF-89

BR-SA-00

Number of constraints

F1

F2

The number of variables in F2 is slightly higher than in F1 in most of the cases.

This is mainly due to the new variables introduced to represent some of the arcs in

the multicomodity �ow reformulation. For some instances the increase rate is higher

because they have a high number of resources (e.g. ZA-WD-09 and NL-KP-03). This

reformulation forces the model to create a lot of graphs and therefore new variables. An

odd behaviour can be observed for KS-PR-11, NL-KP-05, NL-KP-09, and ES-SS-08, in

which the number of variables reduces in F2. This happens because a large number

of variables to represent sub-events of infeasible duration is not generated in F2. In

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 79

Figure 5.4: Comparison of the number of non-zeros of F1 and F2 for each instance in
XHSTT 2011 hidden.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

·107

GR-P5-08

GR-PA-08

GR-P3-08

ES-SS-08

NL-KP-09

NL-KP-08

NL-KP-05

NL-KP-03

ZA-WD-09

KS-PR-11

IT-I4-96

GR-HS-11

FI-SS-06

FI-ES-12

BR-SN-00

BR-SM-00

BR-DF-89

BR-SA-00

Number of non-zeros

F1

F2

such cases the reduction on the number of variables for infeasible sub-events surpasses

the number of new variables generated. Recall that variables vr,t (|R| × |T |) are also

discarded in F2.

Although the cuts demand new constraints to the models, the number of constraints

is slightly smaller in F2 compared to F1 for most cases. It happens because of the

reformulations, whereas several constraints can be dropped from the F1. One example

is Inequality (2.38), that generates a large number of constraints (O(|R|×|T G|×|T |3))

but can be removed when considering the multicomodity �ow reformulation in F2.

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 80

Linear Relaxations

Table 5.6 presents linear relaxation of both original (F1) and alternative (F2) for-

mulations over the instances of XHSTT-2011 and their running times as well. Col-

umn ↓Gap presents the percentage of decrease of the gap from using F1 to using F2

(
LBF2

×100

UB − LBF1
×100

UB). The table also presents the best known solution for these instan-

ces (UB). Optimal best known solutions are marked with an asterisk. Instances whose

optimal solution cost is zero were not included. Lower bounds that were improved by

the alternative formulation F2 are highlighted in bold.

Table 5.6: Comparison between linear relaxations of F1 and F2.
Time (s) LB

Instance UB F1 F2 F1 F2 ↓Gap
BR-SA-00 5* 0.2 0.4 0.5 4.0 70%
BR-DF-89 24* 0.2 0.4 0.0 2.0 8%
BR-SM-00 51* 0.5 1.1 8.0 32.5 48%
BR-SN-00 35* 2.5 4.4 2.0 16.0 40%
FI-ES-12 3* 6.1 10.9 0.0 0.0 0%
IT-I4-96 27* 15.8 25.6 0.0 15.0 56%
NL-KP-03 420 28,147.0 10,320.1 0.0 0.0 0%
NL-KP-05 784 31,756.3 17,879.5 0.0 86.0 11%
NL-KP-08 15463 35.5 35.1 2.3 2904.0 19%
NL-KP-09 5095 3,115.6 8,751.9 0.1 179.0 4%
ES-SS-08 335 24.4 23.4 54.9 305.0 75%
GR-P3-08 5* 1.8 2.3 2.0 5.0 60%
GR-PA-08 3* 6.5 3.4 0.0 0.0 0%
Average 30%

Table 5.6 shows that the linear relaxations provided by F2 are signi�cantly stronger

that the ones from F1, leading to an average gap reduction of 30%. The processing

times were slightly longer in F2 in most cases. For NL-KP-09 in special, the new

formulation was considerably slower (2.8×), but it conducted to a huge linear relaxation

improvement. Such a lower bound was even better than the previously best known for

this instance in the integer model (see Table 5.15). The lower bound of 2904 for NL-

KP-08 was also better than the previously best know bound. It should also be noticed

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 81

that F2 was considerably faster than F1 for the most time demanding instances, NL-

KP-03 and NL-KP-05. This is due to the high number of resources in these instances,

where the multicomodity �ow reformulation seems to speed up the linear relaxation

optimization process.

Integer Model

Table 5.7 presents the integer results for both original and alternative formulations

under one hour of time limit. Instances in which neither of the formulations achieved a

feasible solution within the given time limit were omitted. Optimal bounds are marked

with an asterisk and the best bounds/Gaps are highlighted in bold.

Table 5.7: Integer Programming results for formulations F1 and F2 within 1 hour time
limit.

F1 F2

Instance LB UB Gap LB UB Gap
BR-SA-00 4.5 10 0.55 5.0* 5* 0.00
BR-DF-89 21.3 24 0.11 24.0* 24* 0.00
BR-SM-00 49.7 138 0.64 51.0* 51* 0.00
BR-SN-00 17.5 224 0.92 35.0* 217 0.84
FI-ES-12 3.0* 3* 0.00 2.7 4 0.33
GR-HS-11 0.0* 0* 0.00 0.0* 0* 0.00
IT-I4-96 27.0* 11244 1.00 27.0* 15348 1.00
GR-P3-08 5.0* 9 0.44 5.0* 6 0.17
GR-PA-08 0.0 24 1.00 2.0 8 0.75
GR-P5-08 0.0* 0* 0.00 0.0* 0* 0.00
Average 0.47 0.31

From the analysis of Table 5.7, it is possible to note that F2 found the optimal

lower bound for eight out of ten instances against �ve optimal lower bounds in F1.

Regarding the upper bounds the alternative formulation was also superior, �nding �ve

optimal bounds against three from the original formulation. Overall, the Gaps produced

by F2 were considerably smaller than the ones provided by F1, being, on average, 16%

smaller.

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 82

Although some progress towards �nding better bounds for timetabling through

mathematical programming was done in this work, neither of the formulations were

able to �nd any feasible solution for the eight remaining instances in XHSTT-ITC2011-

hidden. This result shows that this problem is still challenging for the research com-

munity, since exact methods are still not able to handle a considerable set of instances

of this problem.

5.3.2 Column Generation Results

Table 5.8 presents the results of the Dantzig-Wolfe Column Generation approach

developed in this work. Column Iters presents the number of iterations required to

solve the problem, column Cols. presents the number of variables required to solve

the problem, column LB presents the lower bound obtained, and column Time (s) the

running time. Results of the linear relaxation of F2 are also reproduced in the table

for comparison purposes. Similarly to Table 5.6, column ↓Gap presents the percentage

of decrease of the gap from using F1 to using F2 (
LBF2

×100

UB − LBF1
×100

UB). Lower bounds

marked with `*' are optimal and bold values highlight the bounds that were improved

by Dantzig-Wolfe Column Generation.

As it can be noticed from Table 5.8, the Dantzig-Wolfe Column Generation was able

to tighten the lower bound of the linear relaxation for �ve instances in the XHSTT-

ITC2011-hidden set. Two of these lower bounds match the optimal solution (UB). On

average, the proposed Column Generation approach led to an 18% Gap reduction when

compared with the alternative formulation F2. However, it is important to highlight

that the processing time of Dantzig-Wolfe Column Generation was considerably higher

than the processing time of F2. Indeed, Dantzig-Wolfe Column Generation could not

even terminate for the Dutch instances within 24 hours of processing time.

Although some bounds were improved by Dantzig-Wolfe Column Generation, the

incorporation of this decomposition in a Branch-and-Price [7] framework was not ex-

plored in this thesis. The high processing time required to solve the Dantzig-Wolfe

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 83

Table 5.8: Results of the proposed Column Generation approach for educational
timetabling.

F2 C G
Instance UB Time (s) LB Iters Cols. Time (s) LB ↓Gap
BR-SA-00 5* 0.4 4.0 25 285 19.5 5.0* 20%
BR-DF-89 24* 0.4 2.0 28 322 27.2 2.0 0%
BR-SM-00 51* 1.1 32.5 58 314 116.1 45.0 25%
BR-SN-00 35* 4.4 16.0 17 380 51.6 29.0 37%
FI-ES-12 3* 10.9 0.0 32 2272 729.0 1.0 33%
IT-I4-96 27* 25.6 15.0 58 848 1,005.7 27.0* 44%
NL-KP-03 420 10,320.1 0.0 - - 24h+ - -
NL-KP-05 784 17,879.5 86.0 - - 24h+ - -
NL-KP-09 15463 35.1 2904.0 - - 24h+ - -
NL-KP-09 5059 8,751.9 179.0 - - 24h+ - -
ES-SS-08 335 23.4 305.0 145 5295 7,481.6 305 0%
GR-P3-08 5* 2.3 5.0* 18 327 20.6 5.0* 0%
GR-PA-08 3* 3.4 0.0 16 219 33.1 0.0 0%
Average 18%

Column Generation and the high number of columns generated make it impractical to

solve an extended Branch-and-Price model to obtain integer solutions. Such an ap-

proach would be applicable only to very small instances, whose optimal solution can

already be found through integer programming or heuristic algorithms in a very short

processing time.

5.3.3 Cut-and-Solve Results

Table 5.9 presents the results of the Cut-and-Solve method under one hour of time

limit. Columns LB, UB and, Gap present, respectively, the lower bound, the upper

bound, and the gap between them for each instance. Results of the linear relaxation of

F2 are also reproduced in the table for comparison purposes. Bounds marked with `*'

are optimal and bold values highlight better performance when comparing the solution

approaches. As suggested by Climer and Zhang [18], it was assumed α = 0.1 to perform

the experiments.

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 84

Table 5.9: Comparison between Cut-and-Solve approach and Integer Programming
formulation F2 within 1 hour time limit.

F2 C S
Instance LB UB Gap Iters LB UB Gap
BR-SA-00 5.0* 5* 0.00 1 5.0* 5* 0.00
BR-DF-89 24.0* 24* 0.00 1 20.0 24* 0.17
BR-SM-00 51.0* 51* 0.00 1- 51.0 67 0.24
BR-SN-00 35.0* 217 0.84 1- 17.0 157 0.89
FI-ES-12 2.7 4 0.33 1 1.0 3* 0.67
GR-HS-11 0.0* 0* 0.00 1- 0.0* - 1.00
IT-I4-96 27.0* 15348 1.00 1- 0.0 - 1.00
GR-P3-08 5.0* 6 0.17 1 5.0* 5* 0.00
GR-PA-08 2.0 8 0.75 1- 1.9 4 0.52
GR-P5-08 0.0* 0* 0.00 1 0.0* 0* 0.00
Average 0.31 0.51

As can be seen by Table 5.9, the Cut-and-Solve approach was not e�ective for

this model of educational timetabling. In column Iters, one can note that, for all

the instances, Cut-and-Solve either required one iteration to be solved or could not

terminate within one hour of time limit. Indeed, for educational timetabling instances,

the number of decision variables having reduced cost other than zero is quite small.

Therefore, solving the �rst iteration of the Cut-and-Solve algorithm is virtually the

same as solving the standard Integer Programming model.

To the best of the author's knowledge, Cut-and-Solve was only tested on Travelling

Salesman [18] and Facility Location problems [79]. In these category of problems, the

decision variables often have a reduced cost other than zero - it is directly related to

the distance (or cost) of the arc related to the decision variable. Therefore, due to the

features of the problem, Cut-and-Solve seems to be unsuitable to handle educational

timetabling problems.

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 85

5.4 Algorithm Results

This section presents the results of the developed algorithms presented in Chap-

ter 4. Subsections 5.4.1, 5.4.2 and 5.4.3 present, respectively, the results of Variable

Neighbourhood Search, Late Acceptance Hill Climbing, and Matheuristic based algo-

rithms. These results are compared with the initial solution to evaluate how e�ective

each algorithm was at improving it.

In this section, the experiments were executed following the ITC2011 rules: the

time limit was adjusted to be equivalent to 1,000 seconds in the benchmark provided

by the organizers (870 seconds) and the number of available threads was set to 1. Note

that the use of commercial mathematical programming solvers, such as Gurobi, were

not allowed in the ITC2011. However, it is considered in the experiments because the

objective is to determinate which algorithmic strategy is the best to tackle the problem

rather than determinate which one would have won the competition.

The algorithms were also compared according to ranking procedure of ITC2011:

each algorithm was executed 5 times in each instance, and the average result was

recorded. Each solver received a ranking on each instance, from 1 (best) to N (worst),

according to the average costs obtained (N is the number of algorithms compared).

Solvers with smaller average rank are claimed better.

5.4.1 VNS Results

Table 5.10 presents the results obtained by the VNS method and its variants. Initial

solutions provided by KHE14 are also present in the table for comparison purposes. The

average objective function cost of the �ve executions for each instance are shown in each

respective cell. The value of �Ranking� was calculated following the ITC2011 ranking

rules. The best results are highlighted in bold.

In some instances, even the production of feasible solutions is challenging, specially

when most constraints are set as hard ones. VNS method and its variants were able to

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 86

Table 5.10: Results of VNS and variants.
Instance KHE14 RVNS SVND VNS SVNS
BR-SA-00 44.0 44.0 42.2 33.8 29.0
BR-DF-89 109.0 109.0 109.0 106.6 104.8
BR-SM-00 (12.0, 128.0) (12.0, 119.0) (9.6, 111.8) (6.4, 113.0) (6.4, 110.6)
BR-SN-00 145.0 145.0 145.0 123.4 121.0
FI-ES-12 3.0 3.0 3.0 3.0 3.0
FI-SS-06 18.0 18.0 8.0 0.0 0.0
GR-HS-11 10.0 10.0 9.6 0.8 0.8
IT-I4-96 54.0 54.0 53.8 50.6 50.2
KS-PR-11 20.0 20.0 20.0 13.0 13.8
NL-KP-03 1515.0 1419.4 1329.6 1474.8 1384.4
NL-KP-05 (19.2, 5758.2) (15.4, 6144.0) (15.4, 6549.2) (18, 5399.0) (13.8, 6812.4)
NL-KP-08 (25.0, 26861.0) (19.4, 28299.4) (19.8, 34548.4) (15.6, 28114.8) (15.4, 31039.4)
NL-KP-09 (16.0, 7930.0) (13.4, 28781.0) (12.4, 26085.0) (11.0, 12793.0) (11.0, 12995.0)
ZA-WD-09 (26.0, 0.0) (25.0, 0.0) (23.4, 0.0) (6.8, 0.0) (7.0, 0.0)
ES-SS-08 1117.0 1117.0 1112.0 959.6 959.6
GR-P3-08 10.0 10.0 10.0 5.0 5.0
GR-PA-08 16.0 16.0 16.0 5.0 5.2
GR-P5-08 0.0 0.0 0.0 0.0 0.0
Ranking 4.36 3.81 3.22 2.00 1.61

improve signi�cantly the feasibility penalty for the 5 instances in which KHE14 could

not provide a feasible initial solution.

As shown in Table 5.10, the SVNS algorithm presented the best results among the

VNS variants. An explanation to this result is the fact that SVNS can accept worse

solutions along the iterations, which makes it more suitable to escape from local minima.

The RVNS algorithm presented poor performance. Since it does not use a local search

method, it loses performance by trying large neighbourhoods instead of smaller ones.

Such large neighbourhoods slow down the search for good solutions.

5.4.2 LAHC Results

Table 5.11 presents the average objective function values obtained by LAHC and

its variants. Similarly to the previous section, initial solutions provided by KHE14 are

also present in the table and the average rankings are reported.

An analysis of the results of Table 5.11 indicates that the LAHC algorithm and its

variants improved considerably the initial solutions provided by KHE14 for most of the

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 87

Table 5.11: Results of LAHC and variants.
Instance KHE14 SA LAHC SF-LAHC SA-SF-LAHC
BR-SA-00 44.0 44.0 34.4 33.8 32.0
BR-DF-89 109.0 108.4 109.0 109.0 109.0
BR-SM-00 (12.0, 128.0) (4.8, 156.8) (8.0, 116.6) (7.6, 111.2) (5.6, 139.4)
BR-SN-00 145.0 145.0 130.0 112.6 114.4
FI-ES-12 3.0 3.0 3.0 3.0 3.0
FI-SS-06 18.0 18.0 0.0 0.0 0.0
GR-HS-11 10.0 10.0 10.0 10.0 10.0
IT-I4-96 54.0 54.0 40.8 37.4 39.0
KS-PR-11 20.0 20.0 8.0 8.6 7.6
NL-KP-03 1515.0 1345.2 1528.4 1290.6 1390.6
NL-KP-05 (19.2, 5758.2) (15.2, 9924.8) (14.8, 7670.0) (14.8, 6730.4) (14.4, 9090.0)
NL-KP-08 (25.0, 26861.0) (25.0, 26861.0) (25.0, 26861.0) (25.0, 26861.0) (25.0, 26861.0)
NL-KP-09 (16.0, 7930.0) (16.0, 7930.0) (16.0, 7930.0) (16.0, 7930.0) (16.0, 7930.0)
ZA-WD-09 (26.0, 0.0) (8.0, 0.0) (6.2, 0.0) (7.2, 0.0) (6.2, 0.0)
ES-SS-08 1117.0 1117.0 954.0 960.0 929.0
GR-P3-08 10.0 10.0 5.2 5.0 5.0
GR-PA-08 16.0 16.0 5.8 4.4 4.8
GR-P5-08 0.0 0.0 0.0 0.0 0.0
Ranking 4.06 3.47 2.94 2.33 2.14

instances in the XHSTT-ITC2011-hidden archive. LAHC was considerably better than

SA. This is an interesting result, since LAHC is a new metaheuristic and it is still open

for improvements. In addition, the Simulated Annealing is known as a good algorithm

for dealing with scheduling problems.

The Stagnation Free version of LAHC obtained promising results, outperforming

its original version in several instances. Indeed, SF-LAHC is more suited than its

original version to escape from local optima. Finally, it is worthy to highlight the

strong performance observed for the combination of LAHC and SA, proposed in this

work (SA-SF-LAHC).

5.4.3 Matheuristic Results

Table 5.12 presents the average results obtained with the matheuristic based algo-

rithms proposed in this work. Again, KHE14 initial solutions and the average rankings

are also presented for comparison purposes.

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 88

Table 5.12: Results of matheurisitc based algorithms.
Instance KHE14 LB Fix-Opt DO-FixOpt SVNS-DO-FixOpt
BR-SA-00 44.0 16.0 5.0 5.0 5.0
BR-DF-89 109.0 98.0 27.2 27.6 26.6
BR-SM-00 (12.0, 128.0) 122.0 69.0 68.4 65.8
BR-SN-00 145.0 145.0 53.4 45.4 43.6
FI-ES-12 3.0 3.0 3.0 3.0 3.0
FI-SS-06 18.0 18.0 0.0 0.0 0.0
GR-HS-11 10.0 10.0 0.0 0.0 0.0
IT-I4-96 54.0 52.0 27.8 27.0 27.0
KS-PR-11 20.0 20.0 7.8 3.4 4.6
NL-KP-03 1515.0 1515.0 1399.6 1297.2 1421.8
NL-KP-05 (19.2, 5758.2) (22.0, 5139.0) (16.8, 7381.6) (17.0, 6817.0) (18.6, 7249.8)
NL-KP-08 (25.0, 26861.0) (25.0, 26861.0) (17.8, 117602.4) (14.8, 125873.2) (14.2, 105092.6)
NL-KP-09 (16.0, 7930.0) (16.0, 7930.0) (16.2, 26435.0) (16.4, 25717.0) (12.8, 14136.0)
ZA-WD-09 (26.0, 0.0) (26.0, 0.0) 25.8 17.8 14.4
ES-SS-08 1117.0 1112.0 655.8 493.0 494.0
GR-P3-08 10.0 10.0 5.0 5.0 5.0
GR-PA-08 16.0 15.0 5.0 4.6 4.6
GR-P5-08 0.0 0.0 0.0 0.0 0.0
Ranking 4.44 4.22 2.61 2.00 1.72

The proposed matheuristic was able to �nd feasible solutions for two instances in

which KHE14 and the metaheuristics could not: BR-SM-00 and ZA-WD-09. However,

even the matheuristics could not reach feasible solutions on most of Dutch instances.

Indeed, these instances are very challenging and, to the best of the author's knowledge,

no solver could �nd feasible solutions for them within the ITC2011 time limit and rules.

Defect-Oriented Fix-and-Optimize presented remarkable results, beating by far its

original version. The selection of resources based on solution defects and shared events

allowed the DO-FixOpt algorithm to �nd good solutions faster than its original version.

DO-FixOpt and SVNS-DO-FixOpt were able to consistently �nd the optimal solution

for seven instances (namely BR-SA-00, FI-ES-12, FI-SS-06, GR-HS-11, IT-I4-96, GR-

P3-08, and GR-P5-08), even within this very short time-limit and one thread setup.

SVNS Defect-Oriented Fix-and-Optimize presented the best results among the math-

euristic based algorithms. However the DO-FixOpt presented a very similar perfor-

mance. This can be explained by the fact of applying SVNS in the beginning of the

search helps the algorithm to �nd good solutions faster before proceeding to the math-

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 89

euristic phase. This situation is more evident when evaluating the performance on large

instances, in which the time-limit is too short for the matheuristic to be e�ective. In

this case SVNS ensures that a good solution will be found. On the other hand, for

small and easy instances, the time that SVNS consumes might slow down the search

for good solutions. A feature that should be considered is that SVNS-DO-FixOpt is

more robust than DO-FixOpt. SVNS-DO-FixOpt can perform well even on huge sized

instances whereas standalone DO-FixOpt could not perform well within the same time

limit.

Although Local Branching could �nd several improved solutions regarding KHE14

initial ones, it was not competitive with the problem speci�c Fix-and-Optimized ap-

proaches proposed in this work.

By evaluating these results, it should be noticed that problem speci�c information

is very important to choose the variables to release in the matheuristic approaches for

timetabling. Indeed, this is a factor of di�erentiation of top performing approaches and

average solvers.

5.5 Overall Comparison of Solvers

Table 5.13 reproduces the results of the top performing solver of each di�erent cate-

gory explored in this thesis. In this table, the dominance of the Fix-and-Optimize based

approach (SVNS-DO-FixOpt) is clear: it achieved a ranking considerably better than

the second ranked solver (1.81 against 2.56). Metaheuristic based approaches presented

a very similar performance, despite SVNS had a slightly better average performance

compared to SA-SF-LAHC. The pure Integer Programming approach using the alter-

native formulation (F2) had a good performance for the small instances. However it

requires more processing time than the ITC2011 time limit to produce any competitive

solution for the others.

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 90

Table 5.13: Comparison of di�erent solution techniques proposed in this work.
Instance KHE14 IP F2 SA-SF-LAHC SVNS SVNS-DOFixOpt
BR-SA-00 44.0 5.0 32.0 29.0 5.0
BR-DF-89 109.0 24.0 109.0 104.8 26.6
BR-SM-00 (12.0, 128.0) 51.0 (5.6, 139.4) (6.4, 110.6) 65.8
BR-SN-00 145.0 217.0 114.4 121.0 43.6
FI-ES-12 3.0 4.0 3.0 3.0 3.0
FI-SS-06 18.0 - 0.0 0.0 0.0
GR-HS-11 10.0 0.0 10.0 0.8 0.0
IT-I4-96 54.0 15348.0 39.0 50.2 27.0
KS-PR-11 20.0 - 7.6 13.8 4.6
NL-KP-03 1515.0 - 1390.6 1384.4 1421.8
NL-KP-05 (19.2, 5758.2) - (14.4, 9090.0) (13.8, 6812.4) (18.6, 7249.8)
NL-KP-08 (25.0, 26861.0) - (25.0, 26861.0) (15.4, 31039.4) (14.2, 105092.6)
NL-KP-09 (16.0, 7930.0) - (16.0, 7930.0) (11.0, 12995.0) (12.8, 14136.0)
ZA-WD-09 (26.0, 0.0) - (6.2, 0.0) (7.0, 0.0) 14.4
ES-SS-08 1117.0 - 929.0 959.6 494.0
GR-P3-08 10.0 6.0 5.0 5.0 5.2
GR-PA-08 16.0 8.0 4.8 5.2 4.6
GR-P5-08 0.0 0.0 0.0 0.0 0.0
Ranking 4.14 3.78 2.72 2.56 1.81

Figure 5.5 presents a comparison of convergence for the best performing solvers

of each category presented in this thesis (IP F2, SA-SF-LAHC, SVNS, and SVNS-

DO-FixOpt) on instance BR-SA-00. This instance was selected to compose the chart

because it captures the main features about the convergence of the algorithms. The

optimal solution for this instance has a cost of 5 unities and it is represented by the

dashed line at the bottom of the chart.

From the analysis of Figure 5.5, it can be seen that the metaheuristic algorithms

cannot escape from a local optima achieved by around 300 seconds of processing time

and they spend most of the processing time stuck on it. The Fix-and-Optimize based

algorithm can easily overcome this limitation and reached the optimal solution rather

quickly. The IP solver also reached the optimal solution for this instance. However it

took more processing time when compared to the Fix-and-Optimize based solver. A

similar behaviour about the algorithms can be observed for the other instances, except

regarding IP F2, that often cannot provide any feasible solution to the instances within

870 seconds.

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 91

Figure 5.5: Convergence chart of SVNS-DO-FixOpt, SVNS, SA-SF-LAHC, and IP F2

for instance BR-SA-00.

0 100 200 300 400 500 600 700 800 900

0

50

100

150

200

250

300

Time (s)

f
(s

)

IP F2

SA-SF-LAHC
SVNS

SVNS-DO-FixOpt

Table 5.14 presents a comparison of the best performing algorithm developed in this

thesis, SVNS-DO-FixOpt, with state-of-art approaches for educational timetabling. For

a short description of these solvers, please refer to Section 1.2.

In Table 5.14, it is clear the superiority of SVNS-DO-FixOpt solver over the others:

from 18 instances in the benchmark set, it achieved the best solution for 17 of them,

implying on a remarkable ranking of 1.19. Besides the rankings, the objective function

of the solutions provided by SVNS-DO-FixOpt are considerably better than the other

solvers'. For example, look at instances BR-SA-00, GR-HS-11, and IT-I4-96, whose

solutions achieved by SVNS-DO-FixOpt are optimal.

Furthermore, SVNS-DO-FixOpt could consistently �nd feasible solutions for 15 out

of 18 solutions of the XHSTT-ITC2011-hidden archive within the ITC2011 time limit.

Meanwhile, KHE and MaxSAT achieved feasible solutions for 13 instances, RPGD

achieved for 12, and GOAL for 9 instances.

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 92

Table 5.14: Comparison of SVNS-DO-FixOpt with state-of-art approaches for educa-
tional timetabling.
Instance KHE14[43] MaxSAT[24] RPGD[3] GOAL[35] SVNS-DOFixOpt
BR-SA-00 44.0 57.0 96.0 (1.0, 63.9) 5.0
BR-DF-89 109.0 75.0 152.0 127.8 26.6
BR-SM-00 (12.0, 128.0) 214.0 (10.0, 143.0) (17.2, 99.6) 65.8
BR-SN-00 145.0 352.0 266.0 (4.0, 233.5) 43.6
FI-ES-12 3.0 3.0 4.0 4.0 3.0
FI-SS-06 18.0 3523.0 9.0 0.4 0.0
GR-HS-11 10.0 4582.0 596.0 15.3 0.0
IT-I4-96 54.0 16979.0 520.0 658.4 27.0
KS-PR-11 20.0 29946.0 (17.0, 9084.0) (14.0, 6934.4) 4.6
NL-KP-03 1515.0 - 40862.0 (0.6, 90195.8) 1421.8
NL-KP-05 (19.2, 5758.2) - (26.0, 26129.0) (33.9, 27480.4) (18.6, 7249.8)
NL-KP-08 (25.0, 26861.0) - (24.0, 999999.0) (25.7, 31403.7) (14.2, 105092.6)
NL-KP-09 (16.0, 7930.0) - (22.0, 999999.0) (36.6, 154998.5) (12.8, 14136.0)
ZA-WD-09 (26.0, 0.0) 0.0 (2.0, 279.0) (2.0, 15.8) 14.4
ES-SS-08 1117.0 - 1451.0 865.2 494.0
GR-P3-08 10.0 7.0 10.0 5.6 5.2
GR-PA-08 16.0 141.0 19.0 7.4 4.6
GR-P5-08 0.0 0.0 2.0 0.0 0.0
Ranking 2.83 3.64 3.69 3.58 1.19

Figure 5.6 presents the ITC rankings of all the solvers proposed in this thesis together

with the best performing state-of-art approaches.

From the analysis of Figure 4.2 it can be seen that the Fix-and-Optimize based

algorithms (DO-FixOpt, SVNS-DO-FixOpt, and FixOpt) completely dominated the

ranking as the best solvers for educational timetabling. Although SVNS-DO-FixOpt

achieved a better ranking in Table 5.12 , DO-FixOpt got a slightly better ranking

than SVNS-DO-FixOpt in this joint analysis. This could be explained by the fact

that the introduction of other solvers may a�ect the rankings between two solvers: a

small di�erence on the average solutions of an instance can lead to a large di�erence on

the rankings if several other solvers achieve solutions in between of these two values.

Neglecting the magnitude of the di�erence between the solutions provided by di�erent

solvers is, indeed, a �aw in the ITC2011 ranking method.

On a second tier of performance comes most of the metaheuristic based approaches

developed in this work, namely SVNS, SA-SF-LAHC, SF-LAHC, VNS, and LAHC.

Indeed, they use the same neighbourhood moves and are quite similar to each other. The

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 93

Figure 5.6: Overall comparison of rankings of solvers over the XHSTT-ITC2011-hidden
archive.

0 2 4 6 8 10 12 14

DO-FixOpt
SVNS-DO-FixOpt

FixOpt
SVNS

SA-SF-LAHC
SF-LAHC

VNS
LAHC
SVND

LB
SA

RVNS
IP

KHE14
GOAL

MaxSAT
RPGD

3.58
3.92

4.5
6.17

6.56
6.78
7.06

8.39
10.25
10.53
10.64

11.36
11.58

12.33
12.58
12.67

14.11

Ranking

main di�erentiation factor here is the method of escaping from local optima, whereas

the ones employed in SVNS and in Stagnation-Free LAHC seems to be the best.

The remaining solvers come in the last tier. Despite the overall performance of them

was inferior, some features should be highlighted. First of all, although KHE14 achieved

a bad ranking, it came before all the other methods in the state-of-art literature. Indeed,

all the algorithms presented in this thesis, except for the IP solver, use KHE14 initial

solutions as an initial point. Consequently they are expected to introduce improvements

on these solutions and to perform better than KHE14. Improvements on KHE14 can

a�ect the performance of all solvers proposed in this thesis. Therefore, it is something

to be explored in future research on the topic. For example, GOAL solver, winner of

ITC2011, uses an old version of KHE to generate initial solutions. The improvements

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 94

introduced in this new version of KHE were so remarkable that it even slightly overcame

the GOAL solver.

Although the IP solver achieved a bad ranking, an interesting behaviour can be

noted about its performance: it achieved optimal solutions for �ve of the instances in

the evaluated instance set, but it could not produce any competitive solution for most

of the others. This result indicates that, even solvers having a bad ranking could be

the most appropriate for a speci�c set of instances.

5.6 Improving Best Known Bounds

The 25 instances of the XHSTT-2014 archive were used to estimate the e�ciency of

the best performing algorithm in this thesis (SVNS-DO-FixOpt) when larger processing

times are available. SVNS-DO-FixOpt will be here refereed to as Hybrid Solver (HS).

In these tests, the Hybrid Solver was allowed to run for 36,000 seconds (10 hours) and

two combinations were considered:

BKS-HS: Hybrid Solver is applied considering the current best known solution as the

initial solution.

KHE-HS: Hybrid Solver is applied using the KHE14 to provide initial solutions, such

as the previous experiments.

On the one hand, the intention behind testing the BKS-HS is to evaluate the re�nement

capacity of the proposed algorithm. This setup is particularly useful if good solutions

are available, such as the scheduling of the last semester, for example. It is important

to remind that it was one of the phases of the ITC2011 competition. On the other

hand, the KHE-HS is more general since it applies to most real world cases, in which

initial solutions for the considered problem are not known a priori.

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 95

Regarding the lower bounds, the alternative integer programming formulation F2

also ran for 36,000 seconds on the open instances of XHSTT-2014. The results obtained

by these two combinations and by the alternative formulation F2 are shown in Table

5.15. Additionally, the previously best known lower bounds (LB) and solutions (UB)

before this work are also reproduced in the table. For BKS-HS, results better than the

current best known solution are highlighted in bold. For KHE-HS, whenever a result

is better than or equals to the current best know it is highlighted. New lower bounds

obtained are also highlighted in bold. In BKS-HS column, results marked with a dash

mean that they are already optimal and it does not make sense to try to load these

solutions and to improve them. In IP F2 column, lower bounds marked with a dash

mean they are already optimal. Optimal bounds are marked with an asterisk.

The proposed hybrid solver obtained remarkable results on polishing the best known

solutions: 15 out of 16 non-optimal solutions of the instance set considered were im-

proved. New optimal solutions were found for instances AU-SA-96, AU-TE-99, FI-

MP-06, FI-WP-06, GR-PA-08, and IT-I4-96. Taking into account the experiments in

which the KHE14 was used to produce initial solutions, one can conclude that the re-

sults obtained are strong: the optimal solution has been found in several instances and,

for some, the result obtained was even better than the previous best known solution.

However, for some datasets, such as the Australian and the Dutch ones, the standalone

solver still cannot achieve feasible solutions. Regarding the lower bounds, strong results

were also obtained. Four new best known lower bounds were found. Among them, the

new lower bound for AU-SA-96 allowed to claim optimality for the instance.

Finally, it should be noticed that the time spent on optimization (10 hours) is not

critical in this application since the schedule can be performed weeks, or even months,

before the beginning of the semester.

CHAPTER 5. COMPUTATIONAL EXPERIMENTS 96

Table 5.15: New best known bounds obtained in this thesis for XHSTT-2014 archive.
Prev. known New LB New UB

Instance LB UB IP F2 BKS-HS KHE-HS
AU-BG-98 0 (1, 386) 0 126 (2, 398)
AU-SA-96 0 24 0* 0* (3, 21)
AU-TE-99 0 125 20* 20* (1, 36)
BR-SA-00 5 5 - - 5*
BR-SM-00 51 51 - - 51*
BR-SN-00 35 35 - - 35*
DK-FG-12 285 3310 412 1263 1668
DK-HG-12 (7, 0) (12, 3124) (7, 0) (12, 2330) (12, 3371)
DK-VG-09 (0, 0) (2, 4097) (2, 0) (2, 2323) (2, 2765)
ES-SS-08 334 335 334 335 351
FI-PB-98 0 0 - - 0*
FI-WP-06 0 1 0* 0* 2
FI-MP-06 77 83 77 77* 77*
GR-H1-97 0 0 - - 0*
GR-P3-10 0 0 - - 0*
GR-PA-08 3 4 3 3* 3*
IT-I4-96 27 34 27 27* 27*
KS-PR-11 0 0 - - 0*
NL-KP-03 0 617 0 199 1103
NL-KP-05 89 1078 89 425 (8, 4460)
NL-KP-09 170 9180 180 1620 (7, 64470)
UK-SP-06 0 (16, 2258) 0 (5, 4014) (53, 1524)
US-WS-09 0 697 0 103 (124)
ZA-LW-09 0 0 - - 0*
ZA-WD-09 0 0 - - 0*

Chapter 6

Concluding Remarks

This chapter summarizes the main �ndings and contributions of this thesis to

the scienti�c community of combinatorial optimization, in speci�c to the automated

timetabling �eld. Section 6.1 presents the main conclusions that can be drawn from

this thesis. Section 6.2 presents the contributions of this thesis in both �elds of mathe-

matical programming and algorithms for timetabling. Section 6.3 suggestions of future

work on this topic are presented. At the end, in Section 6.4, a list of the papers produced

during this thesis is presented.

6.1 Conclusions

The practical and theoretical aspects of educational timetabling attracted the inter-

est of researchers in the last years. A good scheduling of activities in educational context

may improve the sta� satisfaction and the students' performance. New formulations

and algorithms for XHSTT timetabling were explored in this thesis.

In the �eld of mathematical programming it can be concluded that, even with pro-

posal of an enhanced alternative formulation for educational timetabling, this problem

is still very challenging for the scienti�c community. Indeed, only �ve out of the eighteen

instances on XHSTT-ITC-2011 dataset could be solved to optimality in a reasonable

processing time. For eight of these instances not even a feasible solution was achieved

within one hour of processing time. The proposed column generation approach showed

97

CHAPTER 6. CONCLUDING REMARKS 98

promising results, however it takes an infeasible amount of time to provide integer

solutions to the unsolved instances.

Regarding the algorithmic approaches, Fix-and-Optimize based methods are con-

sistently achieving the best results for this model of education timetabling problem.

This result is surprising since it is strongly believed by the scienti�c community that

metaheuristic approaches are the overall top performing algorithms for this category of

problems.

Overall, this thesis provided solid grounds for further research on the topic. Besides

of the proposal and/or implementation of several approaches for automated educational

timetabling, it grouped together several other existing approaches in the literature and

provided strong conclusions on which are the best solvers for this problem. Furthermore,

this work was conducted on a standard widespread format and instance set, which could

be easily followed be the scienti�c community.

6.2 Contributions

In the �eld of mathematical programming formulations, the main contributions of

this thesis are: (i) the development of a stronger formulation F2 that incorporates new

valid inequalities, pre-processing techniques and a multi-commodity network �ow re-

formulation; and (ii) the development of a Dantzig-Wolfe column generation approach

for XHSTT. These mathematical programming techniques developed in this work pro-

vided four new lower bounds out of twelve open instances in the XHSTT-2014 archive.

The alternative formulation F2 was also better than the original one in the search for

integer solutions. Cut-and-Solve algorithm was also explored in this thesis but, due to

the problem features, it had poor performance.

In the �eld of algorithms, the main contributions of this thesis are: (i) the devel-

opment of a problem speci�c Fix-and-Optimize approach for educational timetabling

that is now the best performing approach for this problem by a large margin and pro-

CHAPTER 6. CONCLUDING REMARKS 99

duced new best known solutions for virtually all the open instances in the XHSTT-2014

archive; (ii) the design of an enhanced approach to select the variables to be freed in

the Fix-and-Optimize algorithm, named Defect-Oriented FixOpt, whose performance

overcame its original version and showed a huge potential to be explored in other prob-

lems besides the educational timetabling context; and (iii) the implementation and

development of several metaheuristics for educational timetabling, in speci�c based on

Variable Neighbourhood Search and Late Acceptance Hill-Climbing, and variations of

these algorithms which overcame their original versions and showed potential to be

explored in other combinatorial optimization problems.

6.3 Future Work

The following activities are suggested as topics of future work related to this thesis:

Develop a Graphical User Interface to handle XHSTT:

The XHSTT format is complex and virtually only timetabling researchers are able to

work with this �le format by now. A graphical user interface (GUI) to handle XHSTT

would be essential to abstract the user from XHSTT knowledge and to make any person

able to specify and solve timetabling problems through this format. Although some

work has been done in this sense [32], there is still much room for improvement in the

existing GUI for XHSTT.

Encode and solve new timetabling problems through XHSTT:

The XHSTT format is powerful enough to model most of the features of the edu-

cational timetabling problems, having sixteen di�erent constraint types that might be

hard, soft, or absent, besides allowing the generic speci�cation of any type of resources

and events. Although the encoding of some University Timetabling problems as XH-

STT was explored in Fonseca et al. [33], there are still several problems that could be

CHAPTER 6. CONCLUDING REMARKS 100

modelled as XHSTT. The encoding of new timetabling problems as XHSTT and the

solution of them through XHSTT solvers could be a large step towards the standard-

ization of the instances, solvers and solutions for educational timetabling. Indeed, the

lack of standardization is often mentioned as a major issue to the development of this

research �eld [60, 62, 68].

Develop a new decomposition approach for timetabling:

Decomposition of large Integer Programming models is a promising technique to

solve timetabling problems. Decomposition techniques consists in to decompose a large

IP model into two or more sub-models, or stages. Each sub-model solves a particular

task of the IP model. For example, the considered problem could be decomposed in two

sub-problems: (i) assign times and split events, and; (ii) assign resources. This can

reduce the number of variables and non-zeros, which can make the intractable model

suitable for IP solvers[65]. This idea was successfully explored by Sorensen and Stidsen

[70] to solve Danish timetabling problems. However, to the best of author's knowledge,

it was never evaluated for XHSTT format and instances.

6.4 Publications

The following papers, produced during this thesis, were published in journals related

to Operational Research:

• Fonseca, G. H., Santos, H. G., Carrano, E. G., and Stidsen, T. J. Integer program-

ming techniques for educational timetabling. European Journal of Operational

Research, pages �, 2017.

• Fonseca, G. H. G., Santos, H. G., and Carrano, E. G. Integrating matheuristics

and metaheuristics for timetabling. Computers & Operations Research, 74:108�

117, 2016.

CHAPTER 6. CONCLUDING REMARKS 101

• Fonseca, G. H. G., Santos, H. G., and Carrano, E. G. Late acceptance hill-climbing

for high school timetabling. Journal of Scheduling, 19(4):453�465, 2016.

The following papers were published and presented in international conferences re-

lated to scheduling and timetabling during this work:

• Fonseca, G. H. G., Santos, H. G., and Carrano, E. G., and Stidsen, T. J. R.

Modelling and Solving University Course Timetabling Problems Through XH-

STT. In Proceedings of the 10th Conference on Practice and Theory of Automated

Timetabling, pages 127�138, 2016.

• Fonseca, G. H. G., Santos, H. G., and Carrano, E. G. Improving upper bounds

in high school timetabling by matheuristics. In Proceedings of the 7th Multidisci-

plinary International Conference on Scheduling: Theory and Applications, pages

267�275, 2015.

Bibliography

[1] Abramson, D. Constructing school timetables using simulated annealing: Sequen-
tial and parallel algorithms. Management Science, 37(1):98�113, 1991.

[2] Abuhamdah, A. Experimental result of late acceptance randomized descent algo-
rithm for solving course timetabling problems. International Journal of Computer
Science and Network Security, 10(1):192�199, 2010.

[3] Ahmed, L. N., Özcan, E., and Kheiri, A. Solving high school timetabling prob-
lems worldwide using selection hyper-heuristics. Expert Systems with Applications,
42(13):5463 � 5471, 2015.

[4] Asín Achá, R. and Nieuwenhuis, R. Curriculum-based course timetabling with sat
and maxsat. Annals of Operations Research, 218(1):71�91, 2014.

[5] Avella, P. and Vasilev, I. A computational study of a cutting plane algorithm for
university course timetabling. Journal of Scheduling, 8(6):497�514, 2005.

[6] Badoni, R. P., Gupta, D., and Mishra, P. A new hybrid algorithm for university
course timetabling problem using events based on groupings of students. Computers
& Industrial Engineering, 78(1):12 � 25, 2014.

[7] Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., and Vance,
P. H. Branch-and-price: Column generation for solving huge integer programs.
Operations research, 46(3):316�329, 1998.

[8] Bettinelli, A., Cacchiani, V., Roberti, R., and Toth, P. An overview of curriculum-
based course timetabling. Journal of the Spanish Society of Statistics and Opera-
tions Research, 23(2):313�349, 2015.

[9] Birbas, T., Daskalaki, S., and Housos, E. Timetabling for greek high schools.
Journal of the Operational Research Society, 48(12):1191�1200, 1997.

[10] Boschetti, M., Maniezzo, V., Ro�lli, M., and Röhler, A. B. Matheuristics: Opti-
mization, simulation and control. In Blesa, M. J., Blum, C., Di Gaspero, L., Roli,
A., Sampels, M., and Schaerf, A., editors, Hybrid Metaheuristics, volume 5818 of
Lecture Notes in Computer Science, pages 171�177. Springer Berlin Heidelberg,
2009.

102

BIBLIOGRAPHY 103

[11] Brito, S. S. and Santos, H. G. Automatic integer programming reformulation using
variable neighborhood search. Electronic Notes in Discrete Mathematics, 58:7 �
14, 2017. 4th International Conference on Variable Neighborhood Search.

[12] Burke, E. K. and Bykov, Y. A Late Acceptance Strategy in Hill-Climbing for Exam
Timetabling Problems. In Proceedings of the 7th International Conference on the
Practice and Theory of Automated Timetabling, 2008.

[13] Burke, E. K. and Bykov, Y. The late acceptance hill-climbing heuristic. Technical
Report CSM-192, Department of Computing Science and Mathematics, University
of Stirling, June 2012.

[14] Burke, E. K. and Bykov, Y. The late acceptance hill-climbing heuristic. European
Journal of Operational Research, 258(1):70 � 78, 2017.

[15] Burke, E. K. and Newall, J. P. A multistage evolutionary algorithm for the
timetable problem. IEEE Transactions on Evolutionary Computation, 3(1):63�74,
1999.

[16] Burke, E., Eckersley, A., McCollum, B., Petrovic, S., and Qu, R. Hybrid variable
neighbourhood approaches to university exam timetabling. European Journal of
Operational Research, 206(1):46 � 53, 2010.

[17] Ceschia, S., Di Gaspero, L., and Schaerf, A. Design, engineering, and experi-
mental analysis of a simulated annealing approach to the post-enrolment course
timetabling problem. Computers & Operations Research, 39(7):1615�1624, 2012.

[18] Climer, S. and Zhang, W. Cut-and-solve: An iterative search strategy for combi-
natorial optimization problems. Arti�cial Intelligence, 170(8):714 � 738, 2006.

[19] Conejo, A. J., Castillo, E., Minguez, R., and Garcia-Bertrand, R. Decomposition
techniques in mathematical programming: engineering and science applications.
Springer Berlin Heidelberg, 1 edition, 2010.

[20] Danna, E., Rothberg, E., and Le Pape, C. Integrating mixed integer program-
ming and local search: A case study on job-shop scheduling problems. In Fifth
International Workshop on Integration of AI and OR techniques in Constraint
Programming for Combinatorial Optimisation Problems (CP-AI-OR 2003), pages
65�79, 2003.

[21] Dantzig, G. B. and Wolfe, P. Decomposition principle for linear programs. Oper-
ations Research, 8(1):101�111, 1960.

[22] de Haan, P., Landman, R., Post, G., and Ruizenaar, H. A case study for
timetabling in a Dutch secondary school. Lecture notes in computer science: VI
Practice and theory of automated timetabling. Berlin : Springer, 3867:267�279,
2007.

BIBLIOGRAPHY 104

[23] Demir, L., Tunal�, S., and Eliiyi, D. T. An adaptive tabu search approach for bu�er
allocation problem in unreliable non-homogenous production lines. Computers &
Operations Research, 39(7):1477�1486, 2012.

[24] Demirovi¢, E. and Musliu, N. Maxsat-based large neighborhood search for high
school timetabling. Computers & Operations Research, 78:172 � 180, 2017.

[25] Di Gaspero, L. and Schaerf, A. Multi-neighbourhood local search with application
to course timetabling. In Proceedings of the 4th International Conference on the
Practice and theory of automated timetabling, pages 262�275. Springer, 2003.

[26] Domrös, J. and Homberger, J. An evolutionary algorithm for high school
timetabling. In Proceedings of the 9th International Conference on the Practice
and Theory of Automated Timetabling, pages 485�488, 2012.

[27] Dorneles, A. P., Olinto, C. B. A., and Buriol, L. S. A column generation approach
to high school timetabling modeled as a multicommodity �ow problem. European
Journal of Operational Research, 256(3):685 � 695, 2017.

[28] El-Sherbiny, M. M., Zeineldin, R. A., and El-Dhshan, A. M. Genetic algorithm
for solving course timetable problems. International Journal of Computer Appli-
cations, 124(10), 2015.

[29] Even, S., Itai, A., and Shamir, A. On the complexity of timetable and multi-
commodity �ow problems. SIAM Jounal of Computing, 5(4):691�703, December
1976.

[30] Fischetti, M. and Lodi, A. Local branching. Mathematical Programming, 98(1):23�
47, 2003.

[31] Fischetti, M. and Lodi, A. Optimizing over the �rst chvátal closure. Mathematical
Programming, 110(1):3�20, 2007.

[32] Fonseca, G. H. G., Del�no, T. D., and Santos, H. G. A web-software to handle
xhstt timetabling problems. In Proceedings of the 9th Conference on Practice and
Theory of Automated Timetabling, pages 601�605, 2014.

[33] Fonseca, G. H. G., Santos, H. G., Carrano, E. G., and Stidsen, T. J. R. Mod-
elling and Solving University Course Timetabling Problems Through XHSTT. In
Proceedings of the 11th International Conference on the Practice and Theory of
Automated Timetabling, pages 127�138, 2016.

[34] Fonseca, G. H. G., Santos, H. G., To�olo, T. A. M., Brito, S. S., and Souza, M.
J. F. A SA-ILS approach for the High School Timetabling Problem. In Proceed-
ings of the 9th International Conference on the Practice and Theory of Automated
Timetabling, pages 493�495, 2012.

BIBLIOGRAPHY 105

[35] Fonseca, G. H. G., Santos, H. G., To�olo, T. A. M., Brito, S. S., and Souza, M.
J. F. Goal solver: a hybrid local search based solver for high school timetabling.
Annals of Operations Research, 239(1):77�97, 2016.

[36] Goodman, M. D., Dowsland, K. A., and Thompson, J. M. Hybridising grasp and
network �ows in the solution of a medical school scheduling problem. Journal of
Scheduling, 15(6):717�731, 2012.

[37] Gotlieb, C. C. The construction of class-teacher time-tables. In Proc. IFIP
Congress, pages 73�77. North Holland Pub. Co., 1963.

[38] Hansen, P. and Mladenovic, N. Variable Neighborhood Search: A Chapter of Hand-
book of Applied Optimization., chapter 8. Les Cahiers du GERAD G-2000-3. Mon-
treal, Canada, 2000.

[39] Hansen, P. and Mladenovi¢, N. Variable neighborhood search: Principles and
applications. European Journal of Operational Research, 130:449�467, 2001.

[40] Kelley, J. The cutting-plane method for solving convex programs. Journal of the
Society for Industrial and Applied Mathematics, pages 703�712, 1960.

[41] Kheiri, A., Özcan, E., and Parkes, A. J. HySST: Hyper-heuristic Search Strate-
gies and Timetabling. In Proceedings of the 9th International Conference on the
Practice and Theory of Automated Timetabling, pages 497�499, 2012.

[42] Kingston, J. H. A tiling algorithm for high school timetabling. Lecture notes
in computer science: V Practice and theory of automated timetabling. Berlin:
Springer, 3616:208�225, 2005.

[43] Kingston, J. H. KHE14: An algorithm for high school timetabling. In Proceedings
of the 10th International Conference of the Practice and Theory of Automated
Timetabling, pages 26�29, 2014.

[44] Kingston, J. H. A Software Library for School Timetabling, available at
http://sydney.edu.au/engineering/it/ je�/khe/. Accessed in April, 2017.

[45] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by simulated
annealing. Science, 220(4598):671�680, 1983.

[46] Kostuch, P. The university course timetabling problem with a three-phase ap-
proach. In Proceedings of the 5th international conference on Practice and The-
ory of Automated Timetabling, pages 109�125, Berlin, Heidelberg, 2005. Springer-
Verlag.

[47] Kristiansen, S. and Stidsen, T. J. R. Elective course student sectioning at danish
high schools. Annals of Operations Research, 239(1):99�117, 2016.

BIBLIOGRAPHY 106

[48] Kristiansen, S., Sørensen, M., and Stidsen, T. R. Integer programming for the
generalized high school timetabling problem. Journal of Scheduling, 18(4):377�
392, 2015.

[49] Lewis, R., Paechter, B., and Mccollum, B. Post enrolment based
course timetabling: A description of the problem model used for track
two of the second international timetabling competition. Technical report,
QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1. 0, Queen's University, Belfast,
United Kingdom, 2007.

[50] Maniezzo, V., Stützle, T., and Voÿ, S. Matheuristics: Hybridizing Metaheuristics
and Mathematical Programming. Springer, 1st edition, 2010.

[51] McCollum, B., McCullam, P., Burke, E. K., Parkes, A. J., and Qu, R. The second
international timetabling competition: Examination timetabling track. Technical
report, QUB/IEEE/Tech/ITC2007/Exam/v4.0/17, Queen's University, Belfast,
United Kingdom, 2007.

[52] Mladenovic, N. and Hansen, P. Variable neighborhood search. Computers and
Operations Research, 24:1097�1100, 1997.

[53] Moura, A. V. and Scara�cci, R. A. A grasp strategy for a more constrained school
timetabling problem. International Journal of Operational Research, 7(2):152�170,
2010.

[54] Muller, T. ITC2007 solver description: a hybrid approach. Annals OR, 172(1):429�
446, 2009.

[55] Neufeld, G. A. and Tartar, J. Graph coloring conditions for the existence of so-
lutions to the timetable problem. Communications of the ACM, 17(8):450�453,
August 1974.

[56] Nguyen, K., Nguyen, Q., Tran, H., Nguyen, P., and Tran, N. Variable neighborhood
search for a real-world curriculum-based university timetabling problem. In Third
International Conference on Knowledge and Systems Engineering, pages 157�162.
IEEE, 2011.

[57] Nurmi, K. and Kyngas, J. A framework for school timetabling problem. In Pro-
ceedings of the 3rd Multidisciplinary International Scheduling Conference: Theory
and Applications, pages 386�393, 2007.

[58] Ostermann, R. and de Werra, D. Some experiments with a timetabling system.
Operations-Research-Spektrum, 3(4):199�204, 1982.

[59] Özcan, E., Bykov, Y., Birben, M., and Burke, E. K. Examination timetabling
using late acceptance hyper-heuristics. In Proceedings of the 11th Congress on
Evolutionary Computation, pages 997�1004, Piscataway, NJ, USA, 2009.

BIBLIOGRAPHY 107

[60] Pillay, N. A survey of school timetabling research. Annals of Operations Research,
218(1):261�293, 2014.

[61] Post, G., Di Gaspero, L., Kingston, J. H., McCollum, B., and Schaerf, A. The third
international timetabling competition. Annals of Operations Research, 239(1):69�
75, 2016.

[62] Post, G., Kingston, J. H., Ahmadi, S., Daskalaki, S., Gogos, C., Kyngas, J., Nurmi,
C., Musliu, N., Pillay, N., Santos, H., and Schaerf, A. XHSTT: an XML archive
for high school timetabling problems in di�erent countries. Annals of Operations
Research, 218(1):295�301, 2014.

[63] Puchinger, J. and Raidl, G. Combining metaheuristics and exact algorithms in
combinatorial optimization: A survey and classi�cation. In Arti�cial Intelligence
and Knowledge Engineering Applications: A Bioinspired Approach, volume 3562
of Lecture Notes in Computer Science, pages 41�53. Springer Berlin Heidelberg,
2005.

[64] Qu, R., Burke, E. K., McCollum, B., Merlot, L. T. G., and Lee, S. Y. A sur-
vey of search methodologies and automated system development for examination
timetabling. Journal of scheduling, 12(1):55�89, 2009.

[65] Ruszczy«ski, A. Decomposition methods in stochastic programming. Mathematical
programming, 79(1-3):333�353, 1997.

[66] Santos, H. G., Ochi, L. S., and Souza, M. J. F. A tabu search heuristic with
e�cient diversi�cation strategies for the class/teacher timetabling problem. ACM
Journal of Experimental Algorithmics, 10:2�9, 2005.

[67] Santos, H. G., Uchoa, E., Ochi, L. S., and Maculan, N. Strong bounds with cut and
column generation for class-teacher timetabling. Annals of Operations Research,
194(1):399�412, 2012.

[68] Schaerf, A. A survey of automated timetabling. Arti�cial Intelligence Review,
13:87�127, 1999.

[69] Schmidt, G. and Ströhlein, T. Timetable construction - an annotated bibliography.
The Computer Journal, 23(4):307�316, 1980.

[70] Sørensen, M. and Dahms, F. H. W. A two-stage decomposition of high school
timetabling applied to cases in denmark. Computers & Operations Research, 43:36
� 49, 2014.

[71] Sørensen, M. and Stidsen, T. J. R. Hybridizing integer programming and meta-
heuristics for solving high school timetabling. Proceedings of the 10th International
Conference on the Practice and Theory of Automated Timetabling, pages 557�560,
2014.

BIBLIOGRAPHY 108

[72] Sørensen, M., Kristiansen, S., and Stidsen, T. R. International Timetabling Com-
petition 2011: An Adaptive Large Neighborhood Search algorithm. In Proceed-
ings of the 9th International Conference on the Practice and Theory of Automated
Timetabling, pages 489�492, 2012.

[73] Souza, M. J. F., Maculan, N., and Ochi, L. S. A grasp-tabu search algorithm
for solving school timetabling problems. In Metaheuristics: Computer decision-
making, pages 659�672. Springer, 2004.

[74] Tuga, M., Berretta, R., and Mendes, A. A hybrid simulated annealing with
kempe chain neighborhood for the university timetabling problem. In 6th An-
nual IEEE/ACIS International Conference on Computer and Information Science,
pages 400�405. IEEE Computer Society, 2007.

[75] Valourix, C. and Housos, E. Constraint programming approach for school
timetabling. Computers & Operations Research, pages 1555�1572, 2003.

[76] Verstichel, J. and Berghe, G. V. A late acceptance algorithm for the lock scheduling
problem. Logistik Management, pages 457�478, 2009.

[77] Willemen, R. School Timetable Construction: Algorithms and Complexity. PhD
thesis, Technische Universiteit Eindhoven, 2002.

[78] Wright, M. School timetabling using heuristic search. Journal of Operational
Research Society, 47:347�357, 1996.

[79] Yang, Z., Chu, F., and Chen, H. A cut-and-solve based algorithm for the single-
source capacitated facility location problem. European Journal of Operational Re-
search, 221(3):521 � 532, 2012.

	Introduction
	Objectives
	Literature Review
	Document Structure

	The Timetabling Problem
	Times
	Resources
	Events
	Constraints
	Integer Programming Formulation
	Variables
	Constraints
	Objective Function

	Formulations
	Alternative Formulation
	Generation of Sub-events
	Alternative Formulation for Link Events
	Alternative Formulation for Avoid Clashes
	Alternative Formulation to Link X and Y (LXY)
	Cluster Busy Times Cut (CBT)
	Link Y and Q Cut (LYQ)
	Number of Busy Times Cut (NBT)
	Multicomodity Flow Reformulation (MCF)

	Column Generation
	Cut-and-Solve

	Algorithms
	Constructive Algorithm
	Metaheuristics
	Neighbourhood Structure
	Variable Neighbourhood Search
	Late Acceptance Hill-Climbing

	Matheuristics
	Fix-and-Optimize
	Defect-Oriented Fix-and-Optimize
	Local Branching

	Hybrid Solver

	Computational Experiments
	Computational Environment
	Instance Characterization
	ITC2011 Hidden Instances
	XHSTT-2014 Instances

	Formulation Results
	Comparison between F1 and F2
	Column Generation Results
	Cut-and-Solve Results

	Algorithm Results
	VNS Results
	LAHC Results
	Matheuristic Results

	Overall Comparison of Solvers
	Improving Best Known Bounds

	Concluding Remarks
	Conclusions
	Contributions
	Future Work
	Publications

	References

