UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

Curso de Matemática - Bacharelado

Oitava Lista de Exercícios de Análise III - MTM228 Prof. Júlio César do Espírito Santo

09 de Julho de 2016

- (1) Se U é aberto e $K \subset U$ é compacto, mostre que existe um compacto D tal que $K \subset \mathring{D}$ e $D \subset U$, onde \mathring{D} é o interior do conjunto D.
- (2) † Seja

$$f(x) = \begin{cases} e^{-(x-1)^{-2}}e^{-(x+1)^{-2}}, & \text{se } x \in (-1,1) \\ 0, & \text{se } x \notin (-1,1). \end{cases}$$

- (a) Mostre que $f: \mathbb{R} \to \mathbb{R}$ é uma função C^{∞} a qual é positiva em (-1,1) e zero fora deste intervalo.
- (b) Mostre que existe uma função C^{∞} $g:\mathbb{R} \rightarrow [0,1]$ tal que

$$g(x) = \begin{cases} 0, & \text{se } x \le 0 \\ 1, & \text{se } x \ge \epsilon. \end{cases}$$

Dica: Se f é uma função que é positiva em $(0,\epsilon)$ e nula fora deste intervalo, seja $g(x)=\frac{\int_0^x f}{\int_0^\epsilon f}.$

(c) Se $a=(a_1,a_2,...,a_n)\in\mathbb{R}^n$, defina $g:\mathbb{R}^n\to\mathbb{R}$ por

$$g(x) = f\left(\frac{x_1 - a_1}{\epsilon}\right) \cdot f\left(\frac{x_2 - a_2}{\epsilon}\right) \cdot \dots \cdot f\left(\frac{x_n - a_n}{\epsilon}\right).$$

Mostre que g é uma função C^{∞} a qual é positiva no conjunto

$$(a_1 - \epsilon, a_1 + \epsilon) \times (a_2 - \epsilon, a_2 + \epsilon) \times ... \times (a_n - \epsilon, a_n + \epsilon),$$

e zero fora deste conjunto.

- (d) Se $A \subset \mathbb{R}^n$ é um aberto e $K \subset A$ é um compacto, mostre que existe uma função não negativa $f: A \to \mathbb{R}$ tal que f(x) > 0 para algum $x \in C$ e f = 0 fora de algum conjunto fechado contido em A.
- (e) Mostre que podemos escolher uma f destas de tal forma que $f:A\to [0,1]$ e f=1 em C. Dica: Se a função f de (d) satisfaz $f\geq \epsilon$ para $x\in C$, considere $g\circ f$, onde g é a função de (b).

1

(3) Seja $f:[0,1]\times[0,1]\to\mathbb{R}$ definida por

$$f(x,y) = \begin{cases} 0, & \text{se } 0 \le x \le 1/2 \\ 1, & \text{se } 1/2 \le x \le 1. \end{cases}$$

Mostre que f é integrável e que $\int_{[0,1]\times[0,1]} f = 1/2$.

- (4) † Seja $f:A\to\mathbb{R}$ uma função integrável e g=f exceto em um número finito de pontos. Prove que g é integrável e que $\int_A g = \int_A f$.
- (5) Faça o que se pede.
 - (a) Mostre que um conjunto ilimitado não pode ter conteúdo nulo.
 - (b) Dê um exemplo de um conjunto fechado, de medida nula cujo conteúdo não seja nulo.
 - (c) Se C é um conjunto de conteúdo nulo, mostre que sua fronteira ∂C tem conteúdo nulo.
 - (d) Dê exemplo de um conjunto limitado de medida nula tal que sua fronteira não tem medida nula.
- (6) Se $A \subset [0,1]$ é a união de intervalos abertos (a_i,b_i) tais que cada número racional em (0,1) esta contido em algum (a_i,b_i) . (a) Mostre que a fronteira ∂A é [0,1]-A.
 - (b) Se $\sum_{i=1}^{\infty} (b_i a_i) < 1$, mostre que a fronteira de A não tem medida zero.
 - (c) Dê exemplo de um conjunto aberto que não seja Jordan-Mensurável.
- (7) † (Lindelöf) Prove que se $A \subset \mathbb{R}^n$ é um conjunto qualquer e \mathcal{O} é uma cobertura aberta para A, então existe uma subcobertura aberta enumerável para A.

Hint: Para cada $x \in A$, existe um retângulo $B = \prod_{i=1}^{n} [a_i, b_i]$ com a_i, b_i racionais tais que $x \in B \subset U$ com $U \in \mathcal{O}$.

- (8) (Apostol) Calcule cada uma das seguintes integrais duplas:
 - (a) $\iint_{Q} [\sin^2 x \sin^2 y] dxdy$, onde $Q = [0, \pi] \times [0, \pi]$.
 - (b) $\iint |\cos(x+y)| dxdy$, onde $Q = [0,\pi] \times [0,\pi]$.
 - (c) $\iint_Q \lfloor x+y \rfloor dxdy$, onde $Q=[0,2]\times [0,2]$, e $\lfloor t \rfloor$ é o maior inteiro menor ou igual a t.

(9) † (Aliprantis-Burkinshaw) Seja C o conjunto triádico de Cantor construido a partir de [0, 1]. Mostre que a função característica de C, denotada ¹ e definida por

$$\chi_C(x) = \begin{cases} 1, & \text{se } x \in C \\ 0, & \text{se } x \notin C. \end{cases}$$

é Riemann-integrável sobre [0,1] e que $\int_{[0,1]} \chi_C = 0$.

(10) † (Aliprantis-Burkinshaw) Seja $0 < \epsilon < 1$ e $\delta = 1 - \epsilon$. Denotando por C_{ϵ} o ϵ -Conjunto de Cantor construído da seguinte forma: Começando com $A_0 = [0,1]$, remova da parte central de A_0 um intervalo aberto de comprimento $2^{-1}\delta$. Seja A_1 o conjunto restante, isto é,

$$A_1 = \left[0, \ \frac{1}{2} - \frac{\delta}{4}\right] \cup \left[\frac{1}{2} + \frac{\delta}{4}, \ 1\right].$$

No próximo passo, remova do centro de cada um dos 2^1 intervalos fechados disjuntos que compõem A_1 um intervalo aberto de comprimento $2^{-3}\delta$.

Seja A_2 a união dos 2^2 intervalos fechados disjuntos restantes. O passo geral é dado da seguinte forma: Suponha que A_n tenha sido construído pela união dos 2^n intervalos fechados disjuntos restantes dos passos anteriores. Do centro de cada um destes intervalos fechados, delete um intervalo aberto de comprimento $2^{-2n-1}\delta$. A_{n+1} será a união destes 2^{n+1} intervalos fechados disjuntos restantes. O ϵ -Conjunto de Cantor é agora definido como sendo o conjunto

$$C_{\epsilon} = \bigcap_{n=1}^{\infty} A_n.$$

(a) Mostre que C_{ϵ} é um conjunto fechado, nunca denso e calcule seu volume. (b) Mostre que $\chi_{C_{\epsilon}}$ não é Riemann-integrável sobre [0,1]. Calcule a integral superior e a integral inferior de $\chi_{C_{\epsilon}}$ sobre [0,1]. (Dica, mostre que o conjunto dos pontos de descontinuidade de $\chi_{C_{\epsilon}}$ é C_{ϵ} .)

Bom Descanso!

¹ Em alguns textos, encontra-se a notação $\mathbb{1}_A(x)$, no lugar de $\chi_A(x)$.