UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

Prof: Juliano Soares Amaral Dias

Primeira lista de Álgebra II

- (1) Seja $\mathcal{F} = \{f : [0,1] \longrightarrow \mathbb{R} \mid f \text{ \'e função contínua}\}$. Defina em \mathcal{F} as seguintes operações (f+g)(x)=f(x)+g(x) e $(f\cdot g)(x)=f(x)g(x)$. Mostre que $\mathcal F$ é um anel comutativo com unidade, mas não é um domínio de integridade.
- (2) Mostre que um anel de divisão A não possui divisores de zero.
- (3) Seja $M_{n\times n}(A)$ o anel das matrizes de ordem $n\times n$ com coeficientes em A. Demonstre
 - (a) $M_{2\times 2}(\mathbb{R})$ é um anel simples;
 - (b) $M_{n\times n}(\mathbb{R})$ é um anel simples para qualquer n;
 - (c) se A é um anel de divisão, então $M_{n\times n}(A)$ é um anel simples.
- (4) Sejam $\mathcal{F}=\{f:[0,1]\longrightarrow\mathbb{R}\mid f$ é função contínua $\}$ e $c\in[0,1]$. Então o conjunto $I = \{ f \in \mathcal{F} \mid f(c) = 0 \}$ é um ideal maximal.
- (5) Seja A[x] o anel de polinômios com coeficientes em A. Demonstre que:
 - (a) $\langle x \rangle$ é um ideal primo de $\mathbb{Z}[x]$, mas não é maximal em $\mathbb{Z}[x]$;
 - (b) $\langle x \rangle$ é um ideal primo e maximal de $\mathbb{R}[x]$.
- (6) Sejam A um anel comutativo com unidade e I um ideal de A. Então A/I é um domínio de integridade se, e somente se, I é um ideal primo.
- (7) Calcule os anéis de automorfismos $Aut(\mathbb{Z})$, $Aut(\mathbb{Q})$ e $Aut(\mathbb{R})$.
- (8) Seja J um ideal do anel quociente A/I. Existe um ideal J de A tal que $I \subseteq J$ e
- (9) Mostre que o conjunto $I = \{p(x) = \sum_{i=0}^{n} a_i x^i \mid a_0 \in par\}$ é um ideal de $\mathbb{Z}[x]$ mas não é
- (10) Se p é primo, então $x^p x$ tem p raízes distintas em \mathbb{Z}_p .
- (11) Seja p um número primo. Sabemos que o conjunto $\mathbb{Q}_p = \{\frac{m}{n} \in \mathbb{Q} \mid p \nmid n\}$ é um anel. Mostre que $I = \{\frac{m}{n} \in \mathbb{Q}_p \mid \frac{m}{n} \notin \mathcal{U}(\mathbb{Q}_p)\}$ é o único ideal maximal de \mathbb{Q}_p . (12) Se $a + bi \in Irr(\mathbb{Z}[i])$, então $a bi \in Irr(\mathbb{Z}[i])$.
- (13) Sejam $\mathbb{A}[x]$ o anel de polinômios com coeficientes no anel $A \in I = \langle x \rangle$ o ideal gerado por x.
 - (a) Mostre que $\mathbb{R}[x]/I$ é isomorfo ao corpo \mathbb{R} .
 - (b) O resultado continua válido em \mathbb{Z} ? Isto é, $\mathbb{Z}[x]/I$ é um corpo?
- (14) Seja A um anel comutativo finito e com unidade.
 - (a) Mostre que se I é um ideal primo de A então I é um ideal maximal de A.
 - (b) Dê um exemplo de um anel A e um ideal I nestas condições.
- (15) Suponha que A seja um anel comutativo, sem divisores de zero e $I = \langle a \rangle$ um ideal principal tal que A/I é nilpotente, isto é, dado $b+I \in A/I$, existe n tal que $b^n+I=0+I$.
 - (a) Mostre que dado $b \in A$, existe um elemento não nulo $c \neq b$ tal que $ac \in \langle b \rangle$.
 - (b) Adicionando a hipótese de A ser um anel com unidade, mostre que I = A.
- (16) A afirmação: "Os corpos $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}\$ e $\mathbb{Q}[\sqrt{3}] = \{a + b\sqrt{3} \mid a, b \in \mathbb{Q}\}\$ são isomorfos."Está correta? Por que?
- (17) Sejam A um anel comutativo com unidade e $I = \{a \in A \mid a \notin \mathcal{U}(A)\}$. Suponha que I = (I, +) seja um grupo. Prove que:
 - (a) I é um ideal de A.
 - (b) I é maximal.
- (18) Seja $\mathbb{R}[x]$ o anel dos polinômios com coeficientes em \mathbb{R} . Mostre que:
 - (a) $\mathbb{R}[x]$ é um domínio euclidiano.
 - (b) $\langle x^2 + 1 \rangle$ é um ideal maximal.

- (c) $\mathbb{R}[x]/\langle x^2+1\rangle$ é isomorfo ao corpo dos complexos \mathbb{C} .
- (19) Sejam A um anel comutativo com unidade 1_A e I um ideal de A. Considere

$$N = \{a \in A \mid a^n \in I, \text{ para algum } n\}.$$

- (a) Mostre que N é um ideal de A;
- (b) No anel quociente $\frac{A}{N}$, mostre que se $(a+N)^m=0+N$ para algum natural m, então $a\in N$.
- (20) Demonstre as afirmações abaixo:
 - (a) $\mathbb{Z}_2 = \mathbb{Z}/\langle 2 \rangle$ não tem divisores de zero;
 - (b) $\mathbb{Z}_2[i] = \mathbb{Z}[i]/\langle 2 \rangle$ tem divisores de zero;
 - (c) $I = \{p(x) \in \mathbb{Q}[x] \mid p(\sqrt{3}) = 0\}$ é um ideal maximal de $\mathbb{Q}[x]$;
 - (d) $\mathbb{Z}_3[x]/\langle x^2+x-\overline{1}\rangle$ é um corpo.
- (21) Seja A um anel com unidade 1_A , mostre que as afirmações abaixo são equivalentes:
 - (a) Para todo $a \in A$, existe um invertível $u \in \mathcal{U}(A)$ tal que a = aua.
 - (b) Todo $a \in A$ pode ser escrito na forma a = ue, em que e é idempotente e $u \in \mathcal{U}(A)$. (observação: chamamos e é idempotente se $e^2 = ee = e$)

(comentário: os anéis que satisfazem estas condições são chamados unit-regular rings)

- (22) Dizemos que um ideal à esquerda não nulo I é minimal se para qualquer ideal à esquerda J tal que $\{0\} \subseteq J \subseteq I$, implicar em $J = \{0\}$ ou J = I. Seja A um anel com unidade 1_A sem divisores de zero. Mostre que se A possui um ideal minimal à esquerda I, então A é um anel de divisão.
- (23) Sabemos que $\mathbb{Z}[\sqrt{2}] = (\mathbb{Z}[\sqrt{2}], \varphi)$ com $\varphi(a + b\sqrt{2}) = |a^2 2b^2|$ é um Domínio Euclidiano. Mostre que:
 - (a) $\varphi(h) = 0$ se, e somente se, h = 0;
 - (b) $\varphi(hk) = \varphi(h)\varphi(k)$ para qualquer $h \in \mathbb{Z}[\sqrt{2}]$;
 - (c) $h \in \mathcal{U}(\mathbb{Z}[\sqrt{2}])$ se, e somente se, $\varphi(h) = 1$;
 - (d) o ideal $\langle 5 + \sqrt{2} \rangle$ é maximal.