UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

Prof: Juliano Soares Amaral Dias

Segunda lista de Álgebra II

- (1) Sejam $K \subset F \subset L$ e $p(x) = Irr(\alpha, K) \in K[x]$, em que $\alpha \in L$. Mostre que existe $g(x) = Irr(\alpha, F)$ e g(x) divide p(x) em F[x].
- (2) Sejam $\alpha, \beta \in \mathbb{C}$ algébricos tais que $\alpha^3 + \alpha + 1 = 0$ e $\beta^2 + \beta 3 = 0$. Mostre que:
 - (a) $\alpha + \beta$ são algébricos;
 - (b) $\alpha \cdot \beta$ são algébricos;
 - (c) que a soma e o produto de números algébricos são algébricos.
- (3) Determine todos os homomorfismos de $\mathbb{Q}(\sqrt[4]{3})$ em \mathbb{C} e todos os automorfismos de $\mathbb{Q}(\sqrt[4]{3})$.
- (4) Ache $u \in \mathbb{Q}(\alpha, \beta)$ tal que $\mathbb{Q}(\alpha, \beta) = \mathbb{Q}(u)$, nos casos:
 - (a) $\alpha = \sqrt{2} e \beta = i$;
 - (b) $\alpha = \sqrt{2} \ e \ \beta = \sqrt[3]{2};$
 - (c) Em cada caso calcule $[\mathbb{Q}(u):\mathbb{Q}]$.
- (5) Considere ξ a 6°-raiz primitiva da unidade. Prove que $\mathbb{Q}(\xi) = \mathbb{Q}(\xi^2)$ e mostre com ξ pode ser obtido em $\mathbb{Q}(\xi^2)$.
- (6) Seja ξ a 3°-raiz primitiva da unidade.
 - (a) Determine $[\mathbb{Q}(i,\sqrt{3}):\mathbb{Q}(\xi)];$
 - (b) Mostre que $\mathbb{Q}(\xi) = \mathbb{Q}(i\sqrt{3})$.
- (7) Determine se o elemento $\alpha \in K$ é algébrico ou transcedente sobre F, em cada caso. Quando for algébrico, determine seu grau.
 - (a) $K = \mathbb{C}, F = \mathbb{Q} \in \alpha = e^2$;
 - (b) $K = \mathbb{C}, F = \mathbb{R} \in \alpha = \pi$;
 - (c) $K = \mathbb{R}, F = \mathbb{Q}(\sqrt{5}) \in \alpha = \sqrt{5};$
 - (d) $K = \mathbb{C}$, $F = \mathbb{Q}(\sqrt{2})$ e $\alpha = \xi$, em que ξ é a 8°-raiz primitiva da unidade.
- (8) Seja p primo e ξ a p-ésima raiz primitiva da unidade. Mostre que:
 - (a) $\mathbb{Q}(\xi) = \{a_0 + a_1 \xi + \dots + a_{p-2} \mid a_i \in \mathbb{Q}, 0 \le i \le p-2\};$
 - (b) se L um corpo tal que $\mathbb{Q} \subseteq L \subseteq \mathbb{Q}(\xi)$, então $[L:\mathbb{Q}]$ divide p-1.
- (9) Calcule o grau da extensão $\mathbb{Q}(\sqrt[4]{3}, \sqrt[6]{3}, i)$ sobre \mathbb{Q} .
- (10) Mostre que se [L:K]=2n+1 e $L=K(\alpha)$, então $L=K(\alpha^2)$.
- (11) Verifique se $f(x) = x^5 20x + 5$ é irredutível sobre \mathbb{Q} e calcule $Gal(f(x), \mathbb{Q})$.
- (12) Seja ξ uma raiz n-ésima primitiva da unidade, com n ímpar. Mostre que $-\xi$ é uma raiz 2n-ésima primitiva da unidade.
- (13) Mostre que:
 - (a) $Gal(x^2 3, \mathbb{Q}) = Gal(x^2 2x 2, \mathbb{Q});$
 - (b) $[Gal(x^4 4x^2 5, \mathbb{Q}) : \mathbb{Q}] = 4;$
 - (c) $\mathbb{Q}(\sqrt{2}, i) = Gal(x^2 2\sqrt{2}x + 3, \mathbb{Q});$
 - (d) $Gal(x^4-2,\mathbb{Q}) \subset Gal(x^4+2,\mathbb{Q})$
- (14) Verifique se as afirmações são verdadeiras ou falsas. Em qualquer caso, justifique.
 - (a) As extensões $\mathbb{Q}(3-2i)$ e $\mathbb{Q}(\frac{2}{1+i})$ sãol iguais.
 - (b) $\mathbb{Q}(\pi^2 1)$ é uma extensão algébrica de $\mathbb{Q}(\pi^6)$.
 - (c) $[Gal(x^3 8, \mathbb{Q})] = 3.$
 - (d) $\mathbb{Q}(\sqrt[4]{5}, i)$ é o corpo de decomposição de algum polinômio sobre \mathbb{Q} .
 - (e) $\mathbb{Q}(\sqrt[3]{5})$ não é uma extensão normal de \mathbb{Q} .
 - (f) $\sqrt{\pi}$ é algébrico sobre $\mathbb{Q}(\pi)$.
 - (g) $[\mathbb{Q}(\sqrt{2}, \sqrt{5}, \sqrt{10}) : \mathbb{Q}] = 4.$
- (15) Assuma que $u, v \in K$ são algébricos sobre F com polinômios minimais p(x) = Irr(u, F) e q(x) = Irr(v, K).

- (a) Se gr(p(x)) = m, gr(q(x)) = n e mdc(m,n) = 1 então prove que $[F(u,v):F] = m \cdot n$.
- (b) Mostre que a conlusão da parte (a) pode ser falsa se m e n não são relativamente primos.
- (c) Determine $[\mathbb{Q}(\sqrt{7}, \sqrt[5]{9}) : \mathbb{Q}].$
- (16) Seja K uma extensão de F. Mostre que:
 - (a) Se [K:F] = 2 então K é uma extensão normal de F.
 - (b) Seja K = F(u) com u transecente sobre F. Se L é um corpo intermediário da extensão então u é algébrico sobre L.
 - (c) Se K = F(u), onde u é algébrico sobre F de grau ímpar, então $K = F(u^2)$.
- (17) Dê um exemplo de extensões $F \subset L \subset K$, em que L é uma extensão normal de F e K é uma extensão normal de L mas K não é uma extensão normal de F.