## Química Orgânica I Profa. Dra. Alceni Augusta Werle Profa. Dra. Tania Márcia do Sacramento Melo

Reações de Substituição Nucleofílica Alifática Aula 14

## Substituição Nucleofílica

Substratos: Haletos de alquila, Álcoois, Haletos de tosila e mesila

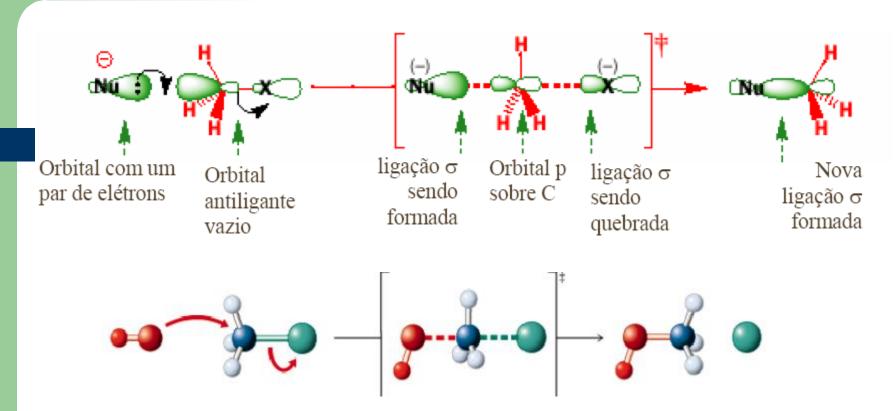
## Mecanismos possíveis

#### Substituição Nucleofílica Bimolecular – S<sub>N</sub>2

#### Substituição Nucleofílica Unimolecular - $S_N 1$

## Natureza do grupo abandonador

Existem poucos grupos abandonadores. Vale as considerações feitas nas reações de eliminação. Para ser um bom grupo abandonador, o substituinte deve ser deslocado como uma molécula ou íon relativamente estável, fracamente básico. A ligação C-H, C-C, C-N, C-P quase nunca será quebrada em reações de substituições.

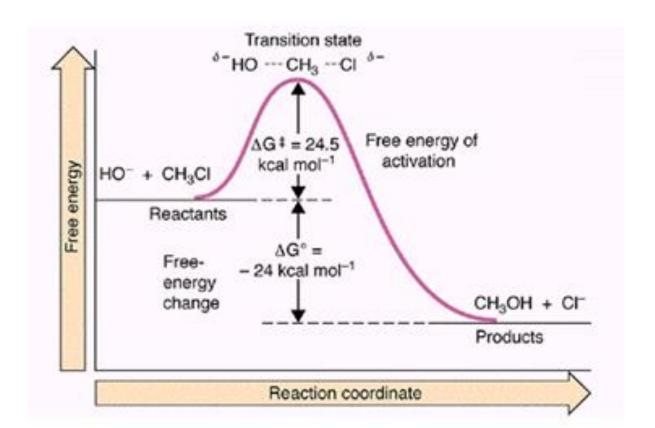

#### **Nucleófilos**

Qualquer espécie química, neutra ou negativa, que tenha um par de elétrons livres (base de Lewis).

Compostos de C, N, O, X, H, S e P podem atuar como nucleófilos:

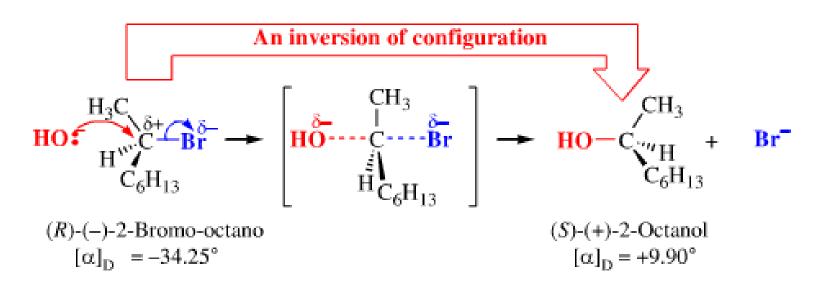
Cl-; Br-; I-; H<sub>2</sub>O; OH-; CH<sub>3</sub>O-; -CN; H-; HS-; NH<sub>3</sub>; etc.

## Mecanismo para a reação S<sub>N</sub>2:



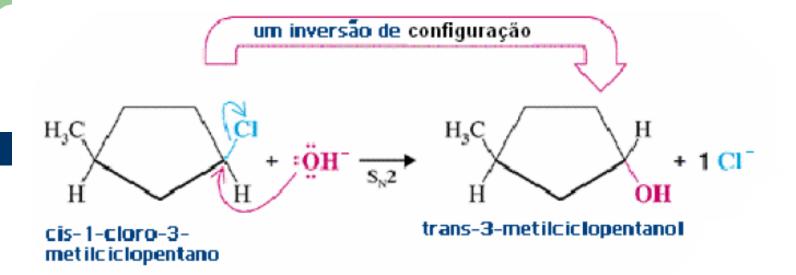

O nucleófilo se aproxima, por trás, do carbono ligado ao grupo abandonador, isto é, pelo lado diretamente oposto ao deste grupo;

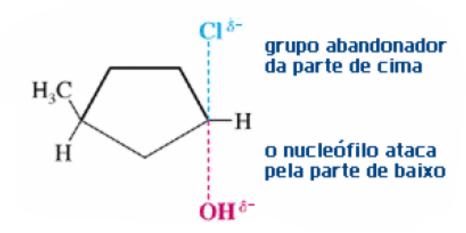
Envolve apenas uma etapa; há formação de estado de transição; a configuração do carbono se inverte;


É uma reação sincronizada.

#### Diagrama de Energia Livre

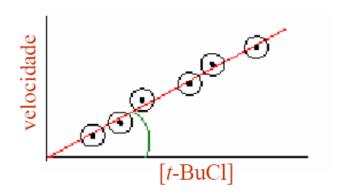


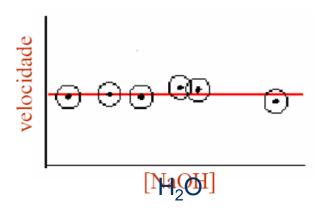

## Estereoquímica da reação S<sub>N</sub>2






Pureza enantiomérica= 100%


Pureza enantiomérica= 100%



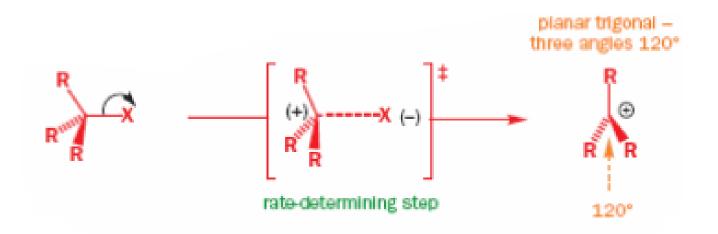



# Reações de Substituição Nucleofílica Unimolecular (S<sub>N</sub>1)

$$(CH_3)_3CBr + 2H_2O \longrightarrow (CH_3)_3COH + H_3O^+ + Br^-$$



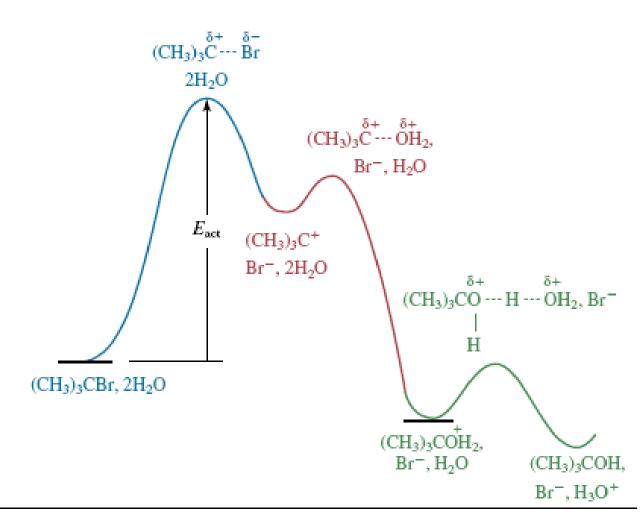



V= k[substrato]

## Mecanismo para a reação S<sub>N</sub>1:

(1) R-X 
$$\xrightarrow{\text{lenta}}$$
 R<sup>+</sup> + X<sup>-</sup>

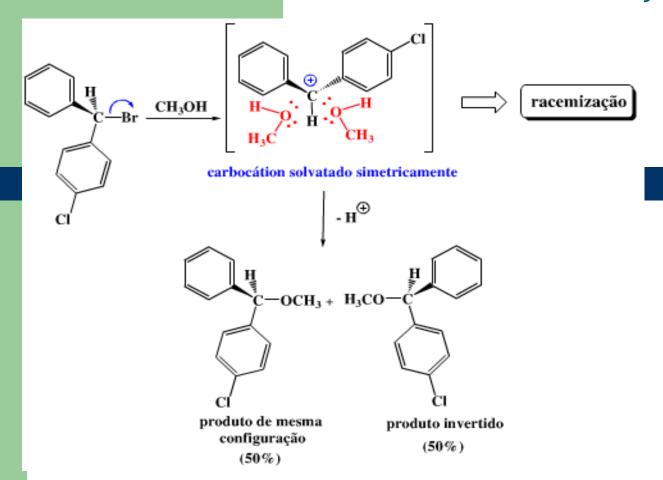
(2) Nu + 
$$R^+$$
  $\longrightarrow$  Nu-R


A primeira etapa leva à formação de um carbocátion

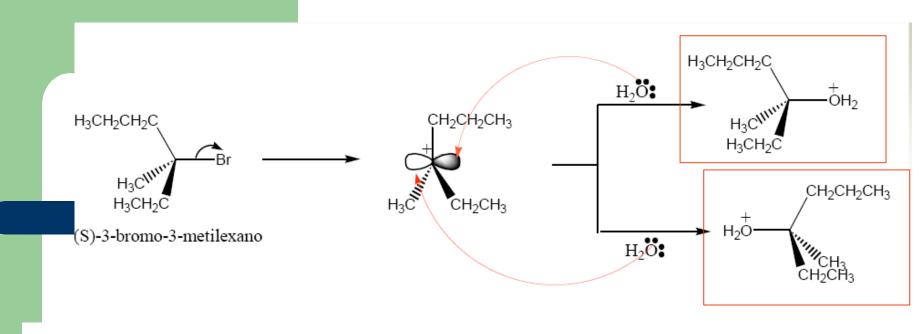


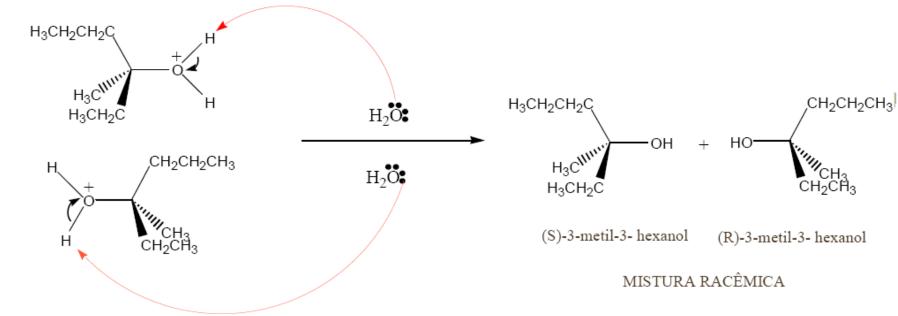
1ª etapa 
$$(CH_3)_3C \xrightarrow{f} \overset{slow}{Er} : \xrightarrow{slow} (CH_3)_3C^+ + : \overset{:iv}{Er} :$$

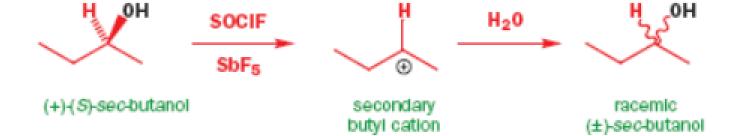
2ª etapa 
$$(CH_3)_3C^+$$
  $+$   $O: \xrightarrow{fast} (CH_3)_3C^+$   $O: H$ 

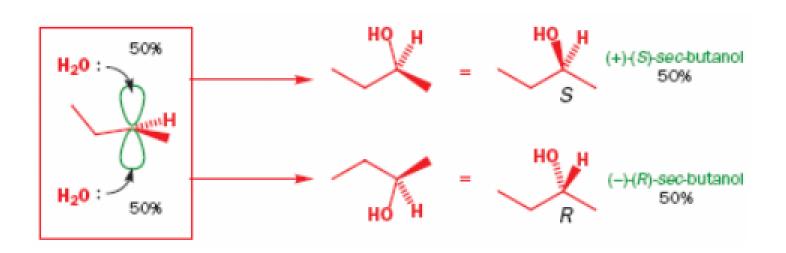

$$(CH_3)_3C$$
 $(CH_3)_3C$ 
 $(CH_3)_3C$ 
 $(CH_3)_3C$ 
 $(CH_3)_3C$ 
 $(CH_3)_3C$ 
 $(CH_3)_3C$ 



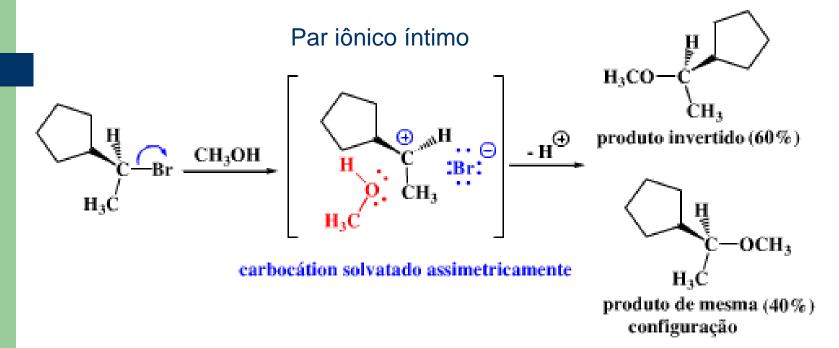

## Estereoquímica da reação S<sub>N</sub>1


carbocátion ⇒ trigonal planar ⇒ataque dos 2 lados


## Racemização




$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_2\\ \text{H}_3\text{C} \\ \text{CH}_3\text{CH}_2\\ \text{CH}_3\text{CH}_2\\ \text{CH}_3\text{CH}_2\\ \text{CH}_3\text{CH}_2\\ \text{CH}_3\text{CH}_3\\ \text{CH}_3\text{CH}_4\\ \text{CH}_3\text{CH}_5\\ \text{CH}_3\text{CH}_5\\ \text{CH}_3\text{CH}_5\\ \text{CH}_3\text{CH}_5\\ \text{CH}_3\text{CH}_5\\ \text{CH}_3\text{CH}_5\\ \text{CH}_2\text{CH}_3\\ \text{CH}_2\text{CH}_3\\ \text{CH}_2\text{CH}_3\\ \text{CH}_2\text{CH}_3\\ \text{CH}_2\text{CH}_3\\ \text{CH}_3\text{CH}_5\\ \text{C$$










#### Nem sempre em reações S<sub>N</sub>1 observa-se total racemização



A extensao da racemização depende:

- ✓ Da estabilidade do carbocátion
- ✓ Natureza do nucleófilo
- ✓ Natureza do grupo abandonador

## Reatividade Relativa em Substituições

As variações nas velocidades observada para cada mecanismo dependem:

- Do solvente
- Da estrutura do substrato
- Da natureza do nucleófilo
- Da natureza do grupo abandonador.

Nenhum destes fatores são completamente independentes

#### Efeito do solvente

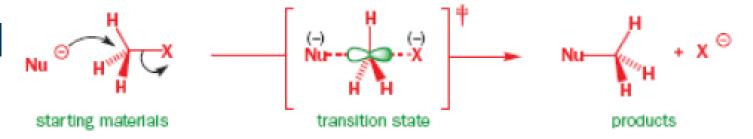
- Para analisar o efeito dos solventes deve-se considerar a formação ou a extinção de íons na etapa determinante da velocidade da reação.
- Bons solventes ionizantes: estabilizam os íons por solvatação
- Reações que produzem íons a partir de espécies neutras são ACELERADAS por bons solventes ionizantes
- Reações nas quais íons colidem com moléculas neutras são mais LENTAS em solventes ionizantes

## Reações S<sub>N</sub>1

### $S_N 1 \rightarrow Solvente polar prótico$

$$H_3C$$
— $C$ - $C$ 1 +  $H_2O$   $\xrightarrow{60^OC}$   $H_3C$ — $C$ - $C$ - $C$ 1 +  $HC$ 1  $C$  $H_3$ 

A constante dielétrica mede o poder ionizante do solvente: > constante dielétrica > poder ionizante


| SOLVENTE     | CONSTANTE<br>DIELÉTRICA | VELOCIDADE<br>RELATIVA |  |  |
|--------------|-------------------------|------------------------|--|--|
| Água         | 78                      | 8000                   |  |  |
| Metanol      | 33                      | 1000                   |  |  |
| Etanol       | 24                      | 200                    |  |  |
| Acetona      | 21                      | 1                      |  |  |
| Éter etílico | <u>4,3</u>              | 0,001                  |  |  |
| Hexano       | 2,0                     | < 0,0001               |  |  |

As velocidades das reações  $S_N1$  aumentam com o uso de um solvente polar prótico.

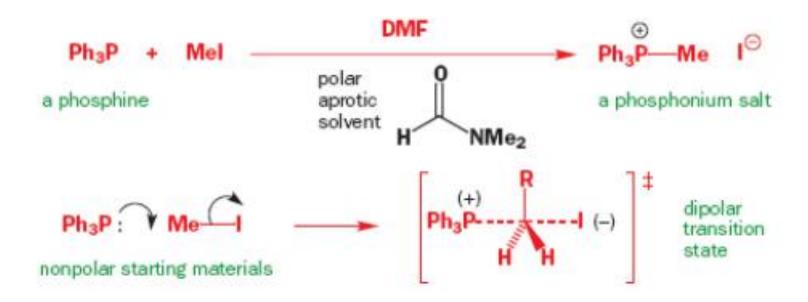
## Mecanismo S<sub>N</sub>2

Nucleófilo aniônico solvente de média polaridade e aprótico

## $S_N^2$ $\rightarrow$ Depende do nucleófilo



Estado de transição menos polar do que na reação via S<sub>N</sub>1

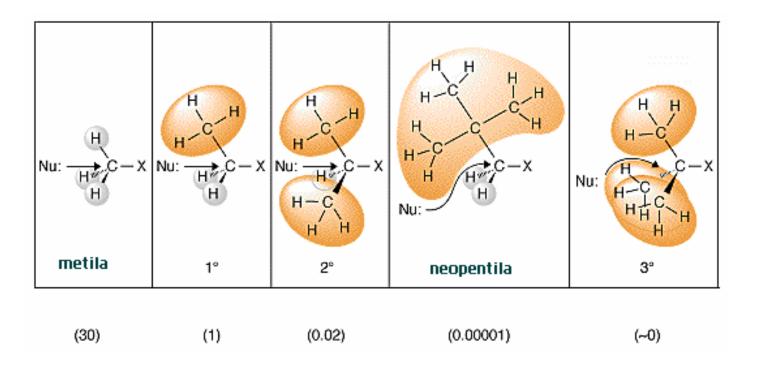

**TABLE 8.7** 

# Relative Rate of S<sub>N</sub>2 Displacement of 1-Bromobutane by Azide in Various Solvents\*

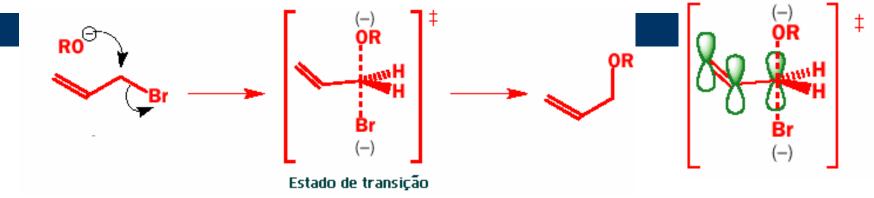
| Solvent                                                              | Structural<br>formula                                         | Dielectric<br>constant ∈             | Type of solvent                                                                 | Relative<br>rate               |
|----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------|--------------------------------|
| Methanol Water Dimethyl sulfoxide N,N-Dimethylformamide Acetonitrile | $CH_3OH$ $H_2O$ $(CH_3)_2S=O$ $(CH_3)_2NCH=O$ $CH_3C\equiv N$ | 32.6<br>78.5<br>48.9<br>36.7<br>37.5 | Polar protic<br>Polar protic<br>Polar aprotic<br>Polar aprotic<br>Polar aprotic | 1<br>7<br>1300<br>2800<br>5000 |

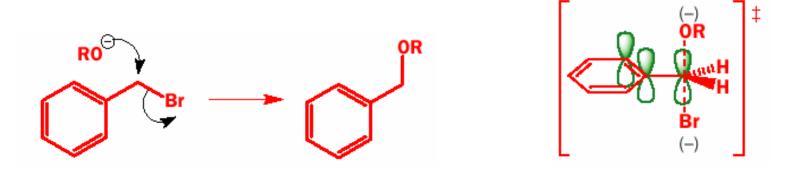
<sup>\*</sup>Ratio of second-order rate constant for substitution in indicated solvent to that for substitution in methanol at 25°C.

#### Nucleófilo neutro - solvente polar aprótico

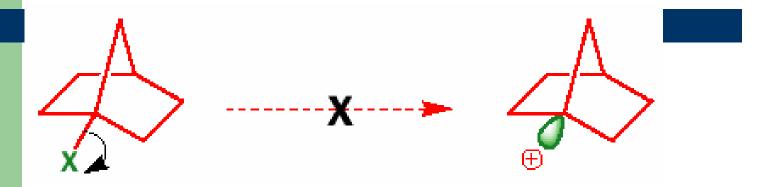



Os solventes polares apróticos solvatam eficientemente os cátions e deixam livre os ânions (nucleófilos)


## Mecanismo S<sub>N</sub>2


• O mecanismo  $S_N 2 \Rightarrow$  ataque por trás  $\Rightarrow$  quanto maior impedimento estérico mais difícil será para o nucleófilo atacar.

Velocidades relativas: Metila > primário > secundário >>> terciário (não reage)




### Haletos alílico e benzílico também dão reação tipo S<sub>N</sub>2





Compostos bicíclicos em que o grupo abandonador está em cabeça de ponte não dão  $S_N 2$  e  $S_N 1$ : tensão angular muito forte



#### Natureza do nucleófilo

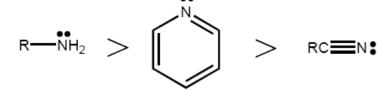
Mecanismo S<sub>N</sub>1

Não sofre influência do nucleófilo

Mecanismo S<sub>N</sub>2

- Depende da concentração e da força de Nu
- Maior [Nu] maior velocidade
- Quanto mais forte o Nu maior velocidade

## Força do nucleófilo


- Todos os nucleófilos são bases
- Nucleofilicidade é paralela a basicidade
- Nucleófilos com carga negativa são mais reativos do que seu ácido conjugado:
- -:OH> H<sub>2</sub>O
- -: SH> H<sub>2</sub>S
- $-:NH_2 > NH_3$

# Nucleófilos com mesmo átomo nucleofílico: a força do nucleófilo acompanha a basicidade

| Ī | nucleofilicidade | pKa de HX | velocidade relativa | $\wedge$ |         |
|---|------------------|-----------|---------------------|----------|---------|
|   | HO <sup>-</sup>  | 15.7      | $1.2 \times 10^4$   |          | 7 /     |
|   | PhO <sup>-</sup> | 10.0      | $2.0\times10^3$     | basi     | nucle   |
|   | AcO <sup>-</sup> | 4.8       | $9 \times 10^2$     | icidade  | ofilici |
|   | H <sub>2</sub> O | -1.7      | 1.0                 | e        | dade    |
|   | CIO <sub>4</sub> | -10       | 0                   |          |         |

basicidade aumenta

nucleofilicidade aumenta



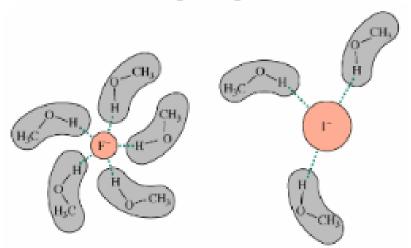
# Nucleófilos com átomo do mesmo período: a força do nucleófilo acompanha a basicidade

| Coluna | 4A                 | 5A                            | 6A   | 7A  |
|--------|--------------------|-------------------------------|------|-----|
| Ácido  | H <sub>3</sub> C-H | H <sub>2</sub> N-H            | НО-Н | H-F |
| Base   | H <sub>3</sub> C-  | H <sub>2</sub> N <sup>-</sup> | HO-  | F-  |
| pKa    | 48                 | 38                            | 15,7 | 3,2 |

basicidade aumenta

nucleofilicidade aumenta

#### Nucleófilos com átomo da mesma coluna


Em solventes PRÓTICOS: o nucleófilo com o átomo nucleofílico maior é o melhor Nu

$$I^- > Br^- > CI^- > F^-$$

$$RSe^- > RS^- > RO^-$$

$$R_3P: > R_3N:$$

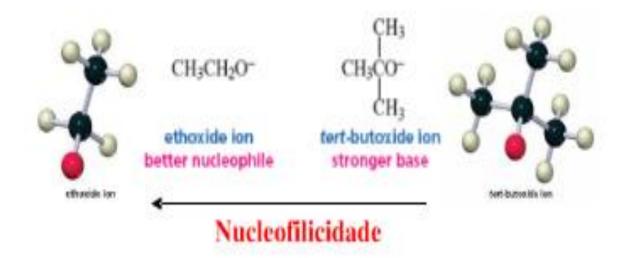
#### Solvente polar prótico



Nucleófilos pequenos são mais solvatados pelo solvente. Os átomos maiores são mais polarizáveis.

A sequência de nucleofilicadade de alguns nucleófilos comuns em solventes próticos é:

$$SH- > CN- > I- > N_3- > Br- > CH_3CO_2- > CI- > F- > H_2O$$


Em solventes polares APRÓTICOS: a nucleofilicidade é igual a basicidade a força do nucleófilo acompanha a basicidade

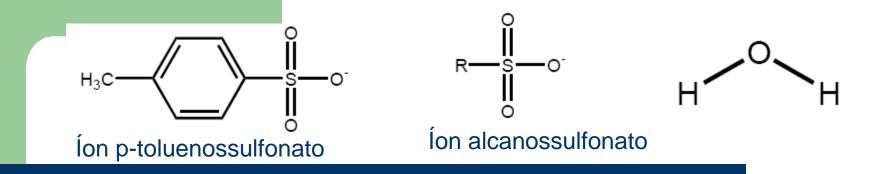
| pKa   | Ácido | Base |                    |
|-------|-------|------|--------------------|
| 3,2   | H-F   | F-   | ba                 |
| -7,0  | H-Cl  | Cl-  | Nucleofilicidade   |
| -9,0  | H-Br  | Br-  | ofilicic<br>de aur |
| -10,0 | H-I   | I-   | lade<br>nenta      |

## Volume do nucleófilo

Quanto menos impedidos os nucleófilos maior a velocidade da reação Íon terc-butóxido (base mais forte do que íon etóxido) não dá substituição quando reage com haletos de alquila (impedimento estérico)

### Nucleofilicidade e impedimento estérico




## A natureza do grupo abandonador (nucleófugo)

Os melhores grupos abandonadores são aqueles que se tornam mais estáveis depois que se desprendem do substrato, bases mais fracas.

Numa reação  $S_N 2$  e  $S_N 1$ , o grupo retirante começa a adquirir uma carga negativa quando de atinge o estado de transição. A estabilização desta carga negativa pelo retirante, contribui para estabilizar o estado de transição (pois diminui a sua energia potencial); assim diminui a energia de ativação e, por isto, aumenta a velocidade da reação.

Bases fracas, moléculas neutras são ótimos grupos abandonadores

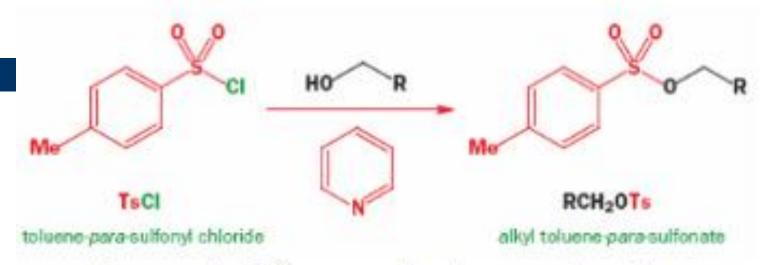
Halogênios 
$$\Gamma > Br > C\Gamma >> F$$



Estes ânions são todos, bases conjugadas de ácidos muito fortes.

Os íons muito básicos raramente atuam como grupos abandonadores. Estes não são deslocados por nucleófilos:

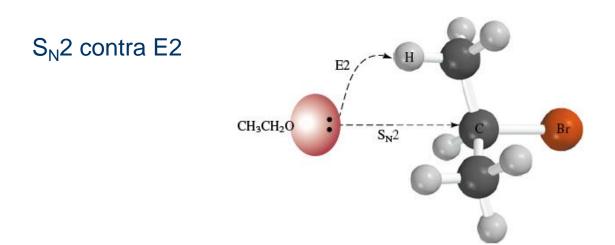
$$H^{-}$$
,  $R_3C^{-}$ ,  $R_2N^{-}$ ,  $RO^{-}$ ,  $HO^{-}$ 


Observe que nas reações S<sub>N</sub>1, frequentemente realizadas em condições ácidas, alguns grupos citados acima, podem ser convertidos em melhores grupos abandonadores.

$$X^{-} \longrightarrow R \xrightarrow{OH} \longrightarrow R - X + OH^{-}$$

$$X^{-} \longrightarrow R \xrightarrow{OH} \longrightarrow R - X + H_{2}O$$

$$Nu$$
: +  $CH_3CH_2$   $\xrightarrow{\sim}$   $CH_3CH_2$   $-Nu$  +  $H$ : or


## Outros bons grupos abandonadores



## O grupo tosil é um excelente grupo de saída

## Reações competitivas Substituição contra Eliminação

Uma vez que a parte reativa de um nucleófilo ou de uma base é um par de elétrons não compartilhados, todos os nucleófilos são bases em potencial e todas as bases são nucleófilos em potencial. Não é surpresa, por isso, que as reações de SN e as reações de E frequentemente estejam competindo umas com as outras.

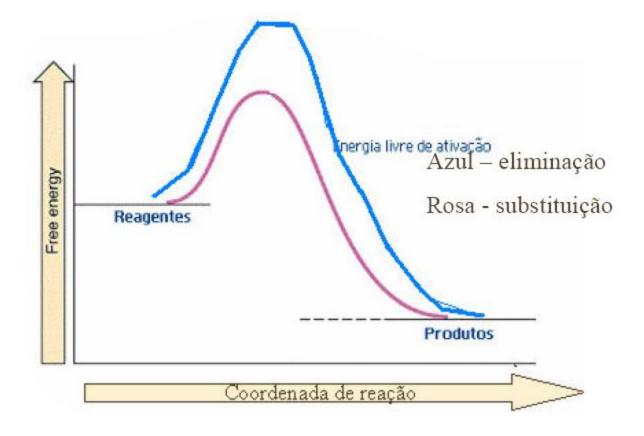


## Para favorecer $S_N$ 2 sobre E2:

Usar um bom nucleófilo, usar a menor temperatura que puder e um solvente relativamente não polar. Os substratos favoráveis serão haletos de metila e os primários, exceto os que têm muito impedimento estérico. Os haletos 2º reagem lentamente, e os 3º de todos os tipos não reagem por esse mecanismo.

Quando o substrato é um haleto primário e a base é o íon etóxido, a substituição é muito favorecida

$$CH_{3}CH_{2}CH_{2}Br \xrightarrow{NaOCH_{2}CH_{3}} CH_{3}CH = CH_{2} + CH_{3}CH_{2}CH_{2}OCH_{2}CH_{3}$$
Propyl bromide Propene (9%) Ethyl propyl ether (91%)


#### Com os haletos secundários, no entanto, a eliminação é favorecida

Haletos terciários, predomina reações de eliminação:

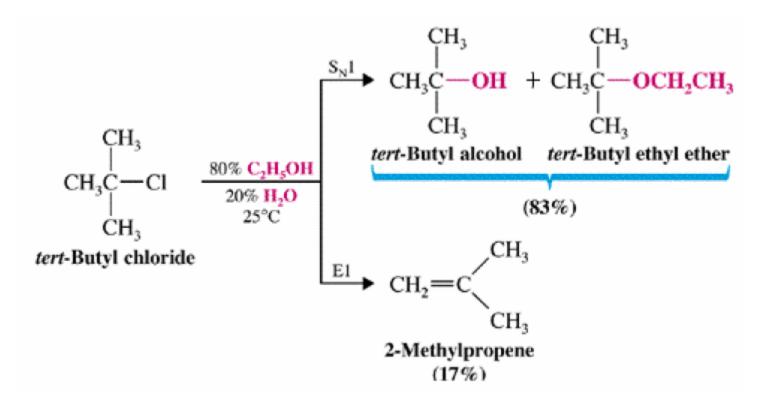
Bases com forte bloqueio estérico favorece a reação de eliminação

$$\begin{array}{c} \text{CH}_3(\text{CH}_2)_{15}\text{CH}_2\text{CH}_2\text{Br} \xrightarrow{\text{KOC}(\text{CH}_3)_3} \text{CH}_3(\text{CH}_2)_{15}\text{CH} = \text{CH}_2 + \text{CH}_3(\text{CH}_2)_{15}\text{CH}_2\text{CH}_2\text{OC}(\text{CH}_3)_3} \\ \text{1-Bromooctadecane} & \text{1-Octadecene (87\%)} & \textit{tert-Butyl octadecyl ether (13\%)} \end{array}$$

A elevação da temperatura favorece as reações de eliminação



Aumento da temperatura ⇒ maior número de moléculas transpõem barreira


Barreira menor ⇒ energia suficiente para voltar

Nucleófilos polarizáveis, tais como I-, RS-, tendem a dar principalmente substituição e pouca eliminação.

Bases fortes (-OH, RO-, -NH2) são muito reativas em abstrair próton e tendem a dar eliminação preferencialmente sobre substituição. O uso de íon fracamente básico, como o íon cloreto, o íon cianeto, íon acetato, Br-, I- ou RS- eleva a possibilidade de SN.

$$\begin{array}{c} \text{CH}_3\text{CH}(\text{CH}_2)_5\text{CH}_3 \xrightarrow{\text{KCN}} & \text{CH}_3\text{CH}(\text{CH}_2)_5\text{CH}_3 \\ \text{Cl} & \text{CN} \\ \\ \text{2-Chlorooctane} & \text{2-Cyanooctane (70\%)} \end{array}$$

## Eliminação também compete com S<sub>N</sub>1



# **RESUMINDO**

| Haleto                  | Nu fraco<br>Solvente<br>H <sub>2</sub> O, ROH | Nu bom<br>Base fraca<br>I-, RS- |         | ca | Nu bom<br>desimpedido<br>Base forte<br>RO- | iı<br>B | Nu bom impedido Base forte t-BuO |  |
|-------------------------|-----------------------------------------------|---------------------------------|---------|----|--------------------------------------------|---------|----------------------------------|--|
| Metílico                | Não reage                                     |                                 | $S_N 2$ |    | $S_N 2$                                    |         | $S_N 2$                          |  |
| Primário<br>desimpedido | Não reage                                     |                                 | $S_N 2$ |    | $S_N 2$                                    |         | E2                               |  |
| Primário<br>impedido    | Não reage                                     |                                 | $S_N 2$ |    | E2                                         |         | E2                               |  |
| Secundário              | S <sub>N</sub> 1, E1<br>(lenta)               |                                 | $S_N 2$ |    | E2                                         |         | E2                               |  |
| Terciário               | S <sub>N</sub> 1 e E1                         | S <sub>N</sub> 1, E1            |         |    | E2                                         | E2      |                                  |  |