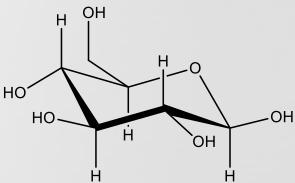
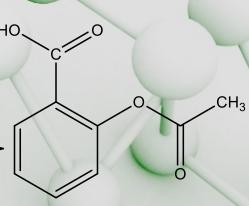
Química Orgânica Aplicada a Biologia

Aula 14

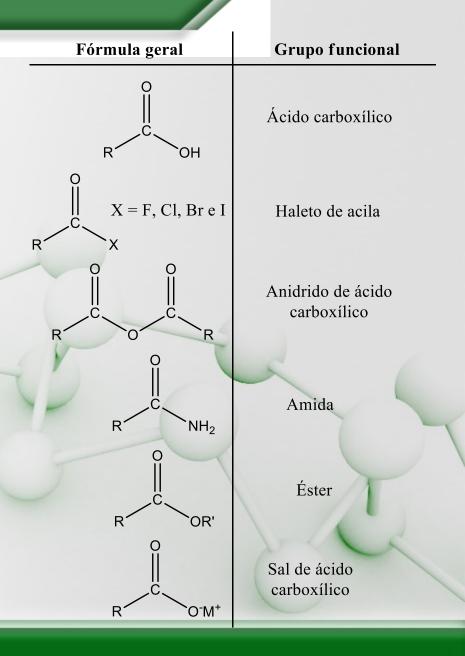

Estudo dos ácidos carboxílicos e derivados

- Os ácidos carboxílicos são estruturalmente caracterizados pela presença do grupo funcional –COOH;
- Estes compostos são largamente encontrados na natureza e os produtos sintéticos também são amplamente utilizados;

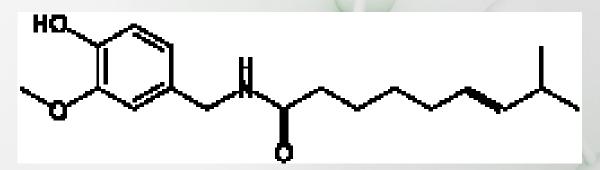

Exemplos: 'OH H_3C m····OH Ácido acético CO Ácido butanóico COOH **Ácido Giberélico** (Hormônio – crescimento de plantas) Ácido hexanóico

Salicilina é um βglicosil alcoólico que contém D-glicose (antiinflamatório que é produzido da casca do salgueiro)

Ácido salicílico

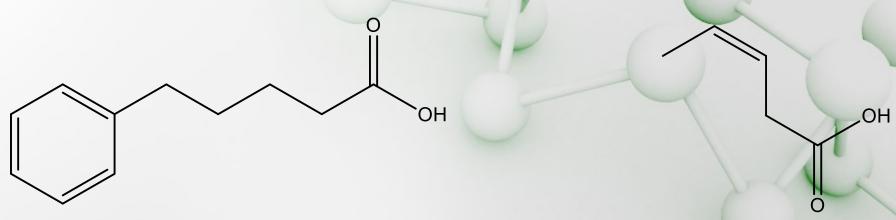


β-D-Glicose



Ácido acetil salicílico

 Os ácidos carboxílicos podem ser interconvertidos em vários grupos de compostos, os quais são genericamente denominados de derivados de ácidos carboxílicos:


- Vários derivados de ácidos carboxílicos também têm ocorrência natural, tais como a capsina (responsável pela pungência da pimenta, isolada de várias espécies de pimenta, Capsicum sp.);
- Penicilina G (antibiótico, isolado do fungo Penicillium chrysogenum sp.);
- Hormônio juvenil (está associado ao desenvolvimento da pulpa de insetos);

Capsaicina (pimentas chili)

2. Nomenclatura

4-bromobutanoato de sódio

Ácido 5-fenilpentanóico

Ácido (Z)-3-pentenóico

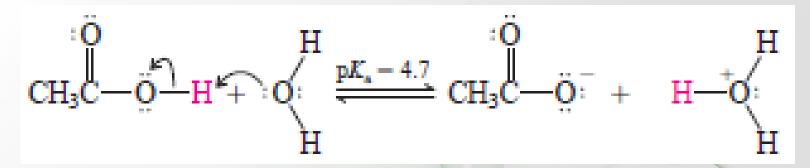

- Os ácidos carboxílicos são capazes de formar ligações de hidrogênio intramoleculares e intermoleculares com solvente polares;
- Os ácidos carboxílicos sólidos e líquidos se encontram na forma dimérica, devido a possibilidade de formação de duas ligações de hidrogênio intermoleculares;
- Devido a este fator, os ácidos carboxílicos são mais solúveis em água, apresentam ponto de ebulição superior, comparativamente aos alcoóis de massa molar semelhante;

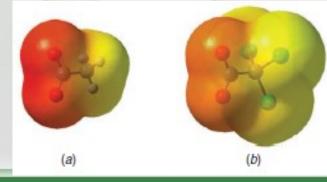
TABLE 19.2 Effect of Substituents on Acidity of Carboxylic Acids*				
Name of acid	Structure	pK _a		
Standard of comparison.				
Acetic acid	CH ₃ CO _z H	4.7		
Alkyl substituents have a negligible effect on ac	idity.			
Propanoic acid 2-Methylpropanoic acid 2,2-Dimethylpropanoic acid Heptanoic acid	$CH_3CH_2CO_2H$ $(CH_3)_2CHCO_2H$ $(CH_3)_3CCO_2H$ $CH_3(CH_2)_5CO_2H$	4.9 4.8 5.1 4.9		
α -Halogen substituents increase acidity.				
Fluoroacetic acid Chloroacetic acid Bromoacetic acid Dichloroacetic acid Trichloroacetic acid	FCH ₂ CO ₂ H CICH ₂ CO ₂ H BrCH ₂ CO ₂ H CI ₂ CHCO ₂ H CI ₃ CCO ₂ H	2.6 2.9 2.9 1.3 0.9		
Electron-attracting groups increase acidity.				
Methoxyacetic acid Cyanoacetic acid Nitroacetic acid	CH ₃ OCH ₂ CO ₂ H N=CCH ₂ CO ₂ H O ₂ NCH ₂ CO ₂ H	3.6 2.5 1.7		

^{*}In water at 25°C.

Table 19-3 pK, Values of Various Carboxylic and Other Acids				
Compound	pK _a	Compound	pK_a	
Alkanoic acids		Dioic acids		
HCOOH	3.55	HOOCCOOH	1.27, 4.19	
CH ₃ COOH	4.76	HOOCCH ₂ COOH	2.83, 5.69	
CICH ₂ COOH	2.82	HOOCCH2CH2COOH	4.20, 5.61	
Cl ₂ CHCOOH	1.26	HOOC(CH ₂) ₄ COOH	4.35, 5.41	
Cl ₃ CCOOH	0.63			
F ₃ CCOOH	0.23	Other acids		
CH ₃ CH ₂ CH ₂ COOH	4.82	H ₂ PO ₄	2.15 (first pK _n)	
CH ₃ CH ₂ CHClCOOH	2.84	HNO ₃	-1.4	
CH ₃ CHClCH ₂ COOH	4.06	H ₂ SO ₄	-3.0 (first pK _a)	
CICH ₂ CH ₂ CH ₂ COOH	4.52	HCl	-8.0	
		H ₂ O	15.7	
Benzoic acids		CH₃OH	15.5	
4-CH ₃ C ₆ H ₄ COOH	4.36			
C ₆ H ₅ COOH	4.20			
4-CIC ₆ H ₄ COOH	3.98			

- Os ácidos carboxílicos ionizam-se apenas parcialmente em solução aquosa, sendo, portanto, ácidos fracos, porém mais fortes quando comparados aos alcoóis e fenóis:
- Ionização do ácido acético em água:

Os valores da constante de acidez K_a dos ácidos carboxílicos


estão na faixa de 10-4 a 10-5;

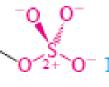
 Os ácidos reagem rapidamente com bases como hidróxido de sódio e bicarbonato de sódio, formando sais de ácidos carboxílicos:

$$\begin{array}{c} O \\ RC - \ddot{O} \stackrel{f}{\longrightarrow} H \stackrel{f}{\leftarrow} \vdots \overset{\circ}{\bigcirc} H & \stackrel{K-10^{11}}{\longleftarrow} & \stackrel{O}{RC} - \overset{\circ}{\bigcirc} \vdots & + H - \overset{\circ}{\bigcirc} H \end{array}$$

- Um ácido carboxílico será mais forte quanto mais estável for a sua base conjugada;
- A estabilidade vai depender da natureza do grupo ligado ao carboxilato;
- Portanto, grupos retiradores de elétrons vão aumentar a estabilidade da base conjugada, e o ácido será mais forte;

 Mapa de potencial eletrostático para os ânions carboxilato (a) ácido acético e (b) ácido tricloroacético.
Existe uma grande deslocalização de carga negativa no tricloroacetato em relação ao acetato devido ao efeito indutivo retirador de elétrons dos três átomos de cloro do tricloroacetato.

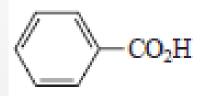
2-Chlorobutanoic acid $(pK_n = 2.85)$ 3-Chlorobutanoic acid $(pK_a = 4.05)$ 4-Chlorobutanoic acid $(pK_a = 4.50)$


lipophilic (hydrophobic)

hydrophilic

Micela (Estearato de sódio)

Sodium stearate [CH₂(CH₂)₁₆CO₂Na]

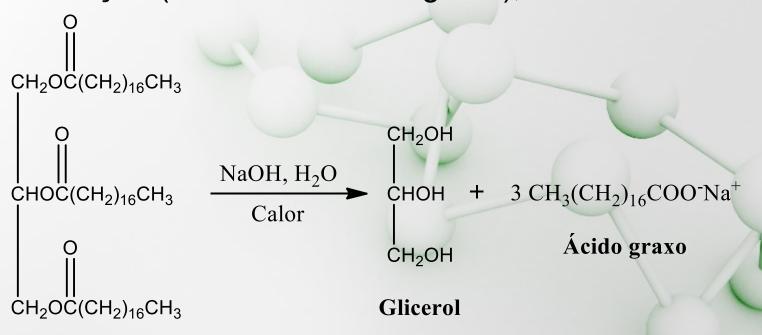


Sodium lauryl sulfate (sodium dodecyl sulfate)

TABLE 19.3 Acidity of Some Substituted Benzoic Acids*

Substituent in XC ₆ H ₄ CO ₂ H	pK_a for different positions of substituent X			
	Ortho	Meta	Para	
Н	4.2	4.2	4.2	
CH₃	3.9	4.3	4.4	
F	3.3	3.9	4.1	
CI	2.9	3.8	4.0	
Br	2.8	3.8	4.0	
1	2.9	3.9	4.0	
CH ₃ O	4.1	4.1	4.5	
O _z N	2.2	3.5	3.4	

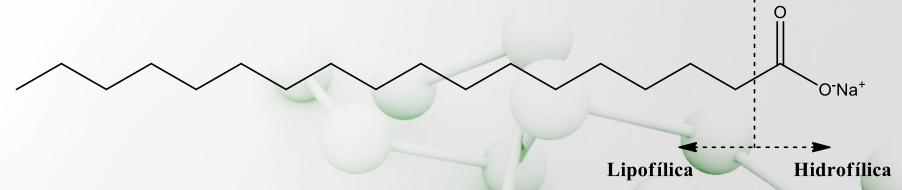
^{*}In water at 25°C.

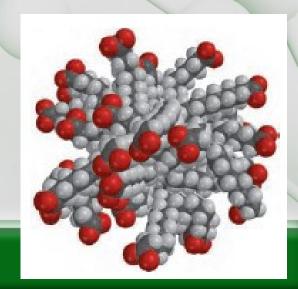


Benzoic acid $pK_n = 4.2$

$$egin{array}{lll} HO_2CCO_2H & HO_2CCH_2CO_2H & HO_2C(CH_2)_5CO_2H \\ Oxalic acid & Malonic acid & Heptanedioic acid \\ pK_1 = 1.2 & pK_1 = 2.8 & pK_1 = 4.3 \\ \hline \end{array}$$

4.2. Reações de ésteres


- Os ésteres sofrem hidrólise. Quando esta é feita em meio básico, os produtos obtidos são sais de ácidos carboxílicos e alcoóis;
- Esta reação também é conhecida como reação de saponificação (hidrólise de éster graxo);


Triestearina

4.2. Reações de ésteres

 Os sais de ácidos graxos têm cadeia longa lipofílica e o grupo carboxilato, devido à polaridade é hidrofílico. Por isso, esses sais são capazes de se solubilizar tanto em óleos quanto em água:

 Quando o sal de ácido carboxílico é colocado em contato com a água, forma-se uma dispersão coloidal constituída por agregados chamados de micelas.

