Química Orgânica I Profa. Dra. Alceni Augusta Werle Profa. Dra. Tania Márcia do Sacramento Melo

Formas de representação e interações intermoleculares Aula 3

1- Fórmula química

 Maneira que os químicos possuem de representar a constituição das moléculas

Fórmula empírica

 Indica os tipos de átomos que formam uma molécula e a proporção em que se encontram.

Ex. CH_2 CH_3 $C_6H_{12}O_6$

Fórmula molecular

•Indica o tipo e a quantidade de átomos que formam uma molécula

Ex. C_2H_4 C_2H_6 CH_2O

Fórmula empírica idêntica para a glucose e para a sacarose, mas fórmulas moleculares distintas: $C_6H_{12}O_6$ glucose $C_{12}H_{24}O_{12}$ sacarose

Fórmulas estruturais dos compostos orgânicos

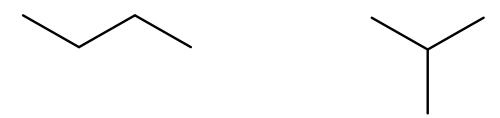
 Existem várias maneiras de representar as fórmulas estruturais de compostos orgânicos. Considerando um composto com fórmula molecular C₃H₈:

Fórmula de traços

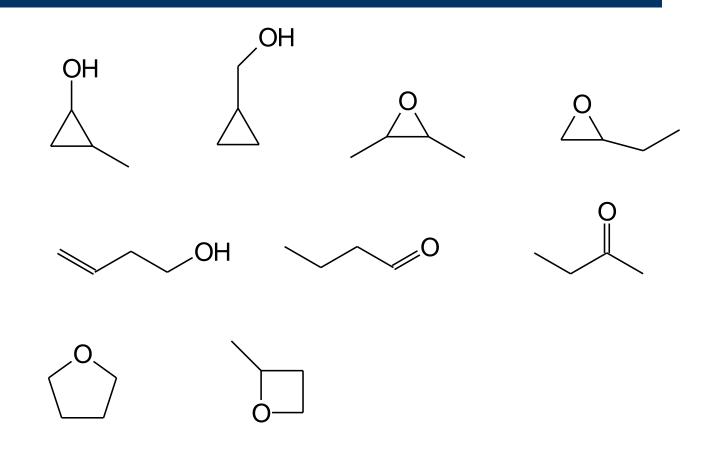
Fórmula condensada

Fórmula de linhas

Considerando uma possibilidade estrutural para um composto com a fórmula molecular C₄H₁₀O


H₃CCH₂CH(OH)CH₃

Os compostos cíclicos seguem o mesmo critério de representação


$$CH_2$$
 CI CH CH_2 CH CH_3

2- Isomeria constitucional

 A fórmula molecular de um composto representa somente os tipos e a quantidade de átomos que a constituem. Já a fórmula estrutural mostra, além disso, o arranjo dos átomos e a seqüência de ligações entre eles. Por exemplo, um composto com fórmula molecular C₄H₁₀ é possível representar os seguintes compostos:

Para o composto de fórmula molecular C₄H₈O, identificamos os seguintes compostos:

3- Polaridade das ligações covalentes e das moléculas

- Em moléculas onde os dois átomos ligados não possuem diferença de eletronegatividade, o par de elétrons é igualmente compartilhado na ligação covalente.
- Porém, quando há diferença de eletronegatividade entre os átomos, o compartilhamento também será desigual, gerando uma ligação polar, e por consequência, uma molécula polar.

Mesma eletronegatividade

H-H

 $\delta + \delta -$

Diferença de eltronegatividade

H-CI

Molécula polarizada

- O elemento mais eletronegativo, atrai os elétrons, o que faz com que apresente um pólo negativo, enquanto que no elemento menos eletronegativo será gerado um pólo positivo.
- A magnitude dessa polarização é denominada de momento dipolar ou momento de dipolo (μ), dado pela seguinte fórmula:

```
\mu = e \cdot d , onde :
```

d= distância, em metro, que separa as cargas

e= carga parcial, em Coulomb

 μ = momento de dipolo (a unidade mais usada é Debye, e seu valor no SI é de 3,33564 x 10⁻³ C/m)

Representação vetorial

 É possível expressar a polaridade das ligações por meio de uma representação vetorial. Este vetor é direcionado do positivo para o negativo, como exemplificado para o caso do HCI.

$$\mu = 4,42 \times 10^{-30} \text{ C/m}$$

Moléculas poliatômicas

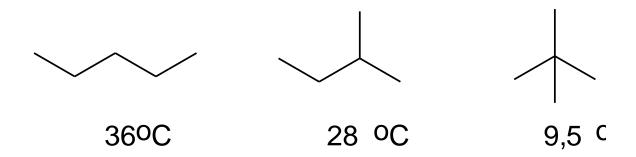
 No caso de moléculas poliatômicas, o momento de dipolo será a resultante da soma vetorial dos momentos de dipolo de todas as ligações.

$$CI$$
 $\mu = 0 \text{ C/m}$

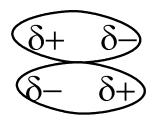
$$\mu = 6.2 \times 10^{-30} \text{ C/m}$$

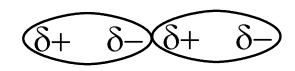
4- Propriedades físicas e forças intermoleculares

- O conhecimento de propriedades físicas como temperatura de ebulição, temperatura de fusão, e solubilidade em determinados solventes, são de suma importância.
- Todas essas propriedades dependem diretamente de forças intermoleculares tais como: interação dipolo-dipolo permanente e dispersões de London (forças de Van der Waals).
- Essas forças são indiscutivelmente mais fracas comparadas às ligações covalentes.


Dispersão de London

• As dispersões de London - forças de Van der Waals entre moléculas e grupos apolares são extremamente fracas e resultam do constante movimento dos elétrons, o que causa desequilíbrios momentâneos entre cargas parciais positivas e negativas, levando à formação de dipolos induzidos nas moléculas. A molécula que possui esse dipolo induzido, ao se chocar com outra molécula, induz a formação de um dipolo nesta, e assim por diante.


Influencia da superficie nas dispersões de London


- A força de atração das dispersões de London somente atua a distâncias muito pequenas. Ela será maior quanto maior for a área de contato entre as moléculas.
- Para alcanos de mesmo nº de átomos de carbono, a temperatura de ebulição diminui com o aumento de ramificações da cadeia.

Interação dipolo-dipolo permanente

 A interação dipolo-dipolo ocorre entre moléculas polares e resulta da atração de pólos com carga diferentes. Considerando a molécula de HCI, observamos este processo.

Ligação de Hidrogênio

- As ligações de hidrogênio aparecem em muitos sistemas químicos e biológicos e exercem neles uma grande influência estrutural. Devido a isso seu estudo passou a ser muito importante no entendimento e racionalização da pesquisa dentro desses sistemas.
- O que conhecemos agora como ligação de hidrogênio foi inicialmente proposto por Moore e Winmill em 1912. Contudo, uma abordagem mais elaborada se desenvolveu a partir da década de 1920.
- Inicialmente considerava-se uma ligação de hidrogênio como sendo uma ligação química formada entre um átomo de hidrogênio e outros dois átomos.

Ligação de Hidrogênio - Definições

- De acordo com a teoria de orbital de valência, o átomo de hidrogênio possui somente um orbital estável (1s), permitindo que ele forme somente uma ligação covalente. Segundo Pauling, a atração do átomo de hidrogênio por dois átomos é fortemente atribuída a forças iônicas e que o número de coordenação do hidrogênio não poderia exceder a dois, devido ao fato que um terceiro átomo de coordenação aumentaria em muito a energia repulsiva do sistema.
- A última definição foi considerada a mais apropriada por quase meio século, sendo vastamente aplicada de 1950-60.
- Os estudos das ligações de hidrogênio ficaram estagnados nas duas décadas seguintes, e tomou um forte impulso na década de 90.

Ligação de Hidrogênio - Definições

 Uma outra definição é dada por Desiraju, que diz que uma ligação de hidrogênio,
 X-H....A é uma interação onde um átomo de hidrogênio é atraído por dois átomos, X e A, e que o átomo de hidrogênio atua como ponte entre esses dois.

Ligação de Hidrogênio - Definições

- As definições dadas anteriormente para a ligação de hidrogênio podem ser denominadas como clássicas.
- Hoje se sabe que as ligações de hidrogênio são um fenômeno muito mais amplo do que as definições iniciais.
- Atualmente tem-se conhecimento de que ligações de hidrogênio fortes se comportam como ligações covalentes em muitas das suas propriedades, enquanto que outras são tão fracas que há dificuldade para distingui-las de uma interação de van der Waals.
- O fato do fenômeno ser tão amplo é que existem regiões contínuas de transição de diferentes efeitos como ligação covalente, ligações iônicas, interação cátion-π e interações de van der Waals.
- Diante das dificuldades para definir limites para uma ligação de hidrogênio, é necessário que a sua definição seja mais geral e flexível.

Ligação de Hidrogênio – Definição de Pimentel e McClellan

- Pimentel e McClellan deram a seguinte definição: "Uma ligação de hidrogênio existe: i) se há evidência de uma ligação química; ii) se há evidência que essa ligação é envolvida estericamente a um átomo de hidrogênio já ligado com outro átomo".
- Essa definição é muito interessante pois não define a natureza química dos participantes, não é feita nenhuma restrição em termos geométricos, porém o átomo de hidrogênio já deve estar envolvido com uma outra ligação química.
- Uma falha dessa definição é que, se ela for aplicada com muito rigor, caracterizará interações que são puramente de van der Waals como sendo uma ligações de hidrogênio.

Ligação de Hidrogênio – Definição de Pimentel e McClellan

- Também interações de três centros e dois elétrons, onde os elétrons da ligação X-H são doados em direção a um centro eletro-deficiente, podem ser confundidas com interação do tipo ligação de hidrogênio.
- Para contornar tais problemas, foi proposta a definição que se segue: Uma interação X-H.....A é chamada de ligação de hidrogênio: i) se isso constitui uma ligação local; e ii) se X-H atua como próton doador para A.
- Esta segunda exigência implica que uma ligação de hidrogênio pode ser tratada como uma reação de transferência de próton, onde A é uma base.

Ligação de Hidrogênio: energias x força

	4 6		-
	Forte	Moderada	Fraca
Tipo de interação	Fortemente covalente	Principalmente eletrostática	Eletrostática/ dispersiva
Comprimento de ligação H···A (Å)	1,2-1,5	1,5-2,2	>2,2
Relação X−H e H···A	$X{-}H\approx H{\cdot} \cdots A$	$X-H < H \cdot \cdot \cdot A$	$X{-}H \lll H \cdots A$
Direcionalidade	Forte	Moderada	Fraca
Ângulo de ligação (*)	170-180	>130	>90
Energia de ligação (kcal/mol)	15-40	4-15	<4

Ligação de Hidrogênio: casos

 A ligação de hidrogênio é representada por uma linha pontilhada, e sua força tem intensidade da ordem de 4 a 40 kJ/mol, como pode ser observado nos exemplos a seguir:

Ligação de Hidrogênio: casos

- Compostos como a água e álcoois formam ligação de hidrogênio entre as próprias moléculas.
- Já os éteres, apesar de possuírem átomo de oxigênio, não têm hidrogênios ligados covalentemente ligados a ele.
- Portanto, duas moléculas de éteres não são capazes de unir através de ligação de hidrogênio, o que já é possível, como por exemplo, com uma molécula de água.

Interações intemroleculares: propriedades físicas

Composto	Massa molar	Pe. (°C)	Força intermolecular predominante
H ₃ CCH ₂ CH ₂ CH ₃	58	0	Van der Waals
H ₃ COCH ₂ CH ₃	60	8	Dipolo-dipolo
H ₃ CCOCH ₃	58	54	Dipolo-dipolo
H ₃ CCH ₂ CH ₂ CH ₂ OH	60	98	Ligação de hidrogênio
H ₃ CCO ₂ H	60	118	Ligação de hidrogênio