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Abstract—In the last decade, it has become apparent that the

performance of Pareto-dominance based evolutionary multiobjec-

tive optimization algorithms degrades as the number of objective

functions of the problem, given by n, grows. This performance

degradation has been the subject of several studies in the last

years, but the exact mechanism behind this phenomenon has

not been fully understood yet. This paper presents an analytical

study of this phenomenon under problems with continuous

variables, by a simple setup of quadratic objective functions

with spherical contour curves and a symmetrical arrangement

of the function minima location. Within such a setup, some

analytical formulae are derived to describe the probability of

the optimization progress as a function of the distance λ to the

exact Pareto-set. A main conclusion is stated about the nature and

structure of the performance degradation phenomenon in many-

objective problems: when a current solution reaches a λ that is

an order of magnitude smaller than the length of the Pareto-set,

the probability of finding a new point that dominates the current

one is given by a power law function of λ with exponent (n−1).
The dimension of the space of decision variables has no influence

on that exponent. Those results give support to a discussion about

some general directions that are currently under consideration

within the research community.

Index Terms—Multiobjective optimization; evolutionary com-

putation; many-objective problems.

I. INTRODUCTION

The field of Evolutionary Multiobjective Optimization

(EMO) experienced a fast development in the 1990’s, when

some algorithms reached a widespread recognition, due to

their favorable properties exhibited in academic studies and

their successful application to real problems [1]–[3]. Those

algorithms shared a common feature: they were based on

the Pareto-dominance selection principle, where the main

selection pressure drives algorithms to the optimal solution

set by assigning higher fitness to the non-dominated solutions

and lower fitness to the dominated ones. However, most of the

research studies and the application scenarios considered were

conducted on problems with two or three objectives only.

The first mention to the difficulties that dominance-based

evolutionary multiobjective algorithms would find in problems

with a number of objectives higher than usual, caused by

the growth of the proportion of non-dominated solutions in
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population, seems to appear in [1], in 1995. However, that

reference did not provide a specific study about the theme. The

early experimental studies that revealed some evidence that a

growing number of objectives could cause difficulties in the

convergence of EMO algorithms were published in 2001. An

attempt to develop some formulae for the expected progress

speed of mutation operations as a function of the number

of objectives was presented in [4], within the framework of

Evolution Strategies. However, those formulae were found

to be not solvable analytically. Some numerical experiments

were conducted in that work, showing that the proportion of

solutions in population that are not dominated by any other

one increases with the number of objectives.

In the same year, the concept of dominance resistant solu-

tions was proposed in [5] in order to designate points located

far away from the Pareto-set that attract the population of

EMO algorithms due to the low probability of generation

of other solutions that dominate them. That work showed

that dominance resistant solutions arise in some classes of

multiobjective optimization problems, possibly leading EMO

algorithms to fail in finding the true Pareto-optimal solutions.

That reference also showed that block-separable problems,

a class of problems that are defined by the concatenation

of smaller problems, will present such dominance resistant

solutions. In 2002, a set of test problems for EMO algo-

rithms was proposed in [6], including some problems that are

endowed with dominance resistant solutions. That reference

also indicated that the difficulty in solving those problems

increases with the dimension of the objective space, in this

way connecting the phenomenon of dominance resistance to

the number of objectives in the problem.

In 2003, a study about the effect of increasing the number

of objective functions on the performance of existing EMO

algorithms was presented in [7]. In that work, it was verified

empirically that for a number of objectives higher than three,

the main EMO algorithms presented a significant degradation

of performance. Those problems with four or more objectives

were named the many-objective problems.

In 2007, a detailed experimental evaluation of the domi-

nance resistance phenomenon in many-objective evolutionary

algorithms was presented in [8]. Those experiments indicated

that the proportion of individuals in a population that are not

dominated by individuals in the next population is greater for a

greater number of objectives, with this proportion growing fast

along the iterations of the evolutionary algorithm. The same

behavior was found in algorithms based on different variation
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(recombination and mutation) operators.

In the years that followed, the pursuit of the reasons

behind that performance degradation and the search for new

approaches that could alleviate this degradation have become

a major theme of research. A large number of works were

developed for dealing with those issues, as reported in the

recent survey papers [9], [10].

This paper presents an analytical study of the performance

degradation phenomenon in Pareto-dominance based search

in many-objective optimization problems. A simple and fully

symmetric analytical problem composed of quadratic objective

functions is studied, and analytical formulae for the probability

of solution enhancement as a function of the distance from

the solution to the Pareto-set are derived. The big picture that

emerges from this analysis is: (i) For any number of objectives,

the task of finding an estimate of a Pareto-optimal solution

with an accuracy of the order of the length of the Pareto-set1

is not a hard task. (ii) The task of finding accurate estimates

of Pareto-optimal solutions becomes increasingly harder as

the required accuracy increases, for any number of objectives

n ≥ 2. Specifically, the probability of success of a “small”

mutation asymptotically reaches a power law relationship with

the distance from the point to the Pareto-set. As the number

of objectives increases the problem becomes more difficult

because higher exponents in the power law, associated with

greater values of n, lead to higher rates of decay in the

probability of success. Those conclusions explain to a large

extent the phenomenon described in [1], [4], [5], [7], [8]. A

preliminary study in those directions was presented in [11],

considering only the case n = 2.

This paper is organized as follows. The Section II states

the general formulation of the multiobjective optimization

problems and of the Pareto-dominance search that are con-

sidered. Section III presents the development of the analytical

asymptotic formulae that describe the probability of finding

a direction in which there exists a point that dominates the

current solution, in a special problem that is stated in order to

allow such an analysis. Those power law formulae constitute

the main results in this paper. Section IV presents some

simulation studies that examine the transition between the

domains of validity of the formula that describes the situation

“far from” the Pareto-set and the formula that describes

that situation “close to” the Pareto-set. In the same section,

simulations show that the same power law still holds in

more general configurations of the problem. The Section V

discusses in more detail the two stages in which a dominance-

based algorithm converges to a Pareto-set, as described by the

proposed formulae. A discussion about the consequences of

the proposed tools for the analysis of the behavior of some

decomposition-based algorithms that constitute a significant

part of the current research efforts on many-objective opti-

mization is presented in Section VI. The final conclusions are

stated in Section VII.

It is important to mention that this work focuses on many-

objective problems in the context of continuous decision

1The length of the Pareto-set is defined as the maximum distance between
two points belonging to that set.

variables only. Although a difficulty of the same kind arises

in combinatorial problems (see for instance [12]–[14]), the

analysis of such problems will require different analysis tools

which are not in the scope of this study.

II. MULTI-OBJECTIVE OPTIMIZATION

In a finite-dimensional continuous-variable multi-criteria

decision problem, a decision variable x should be chosen from

a set Ω ⊆ R
N , according to n criteria functions fi : Ω 7→ R.

Let x1 ∈ Ω and x2 ∈ Ω. It is assumed, by convention,

that x1 is better than x2 in criterion fi if fi(x1) < fi(x2).
As the problem deals with n different criteria, the following

relational operators are defined, in order to compare vectors.

Let u,v ∈ R
n, then:

u � v ⇔ ui ≤ vi, i = 1, . . . , n
u 6= v ⇔ ∃i ∈ {1, . . . , n} : ui 6= vi
u ≺ v ⇔ u � v and u 6= v

Considering two candidate points x1,x2 ∈ Ω, if f(x1) ≺
f(x2) then a rational choice between x1 and x2 would

impose the choice of x1. This motivates the terminology: x1

dominates x2 if f(x1) ≺ f(x2). It is possible that, given f(x1)
and f(x2), neither f(x1) ≺ f(x2) nor f(x2) ≺ f(x1) occurs.

This means that the relation ≺ defines a strict partial order

for Rn (notice that a strict partial order is not reflexive and is

antisymmetric).

The same argument of rationality, when extended to the

decision problem over the set Ω, leads to the choice of the

solutions x ∈ Ω which are not dominated by any other

solution in Ω: those solutions are the minimal solutions in

Ω, considering the strict partial order ≺. A multi-objective

optimization problem is defined as the problem of finding such

minimal solutions:

min f(x) = (f1(x), f2(x), · · · , fn(x))
subject to: x ∈ Ω

(1)

Formally, the solution set of this problem, denoted by P , is

defined by:

P = {x ∈ Ω | 6 ∃ x̄ ∈ Ω such that f(x̄) ≺ f(x)} (2)

The set P is usually called the Pareto-set or the non-dominated

solution set of the problem.

A. Pareto-Dominance Search

An abstraction of an iteration of an Evolutionary Algorithm

may be stated as:

• Consider a current set, in iteration k, of tentative solutions

{xk
1 ,x

k
2 , . . . ,x

k
p}.

• A perturbed set of tentative solutions is generated as

perturbations of the current solutions:

x̄
k
i = x

k
i + ζi

If the perturbation ζi is not conditioned by any other

solution x
k
j , the operation is usually called a mutation,

while if ζi is conditioned by another solution x
k
j , the

operation is usually called a crossover.
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• The perturbed set of solutions {x̄k
1 , x̄

k
2 , . . . , x̄

k
p} is com-

pared with the current set {xk
1 ,x

k
2 , . . . ,x

k
p}, and a selec-

tion is performed in order to choose a new set of solutions

{xk+1
1 ,xk+1

2 , . . . ,xk+1
p }.

Evolutionary Multiobjective Optimization Algorithms

(EMOA) are Evolutionary Algorithms which are intended to

deliver a set of samples of the Pareto-set P of a multiobjective

optimization problem. It is said that the EMOA performs a

Pareto-dominance search if the selection, in the third step

above, is based on the dominance relation:

• If f(xi) ≺ f(xj) then choose xi;

• Otherwise, choose between xi and xj taking into account

a diversity criterion.

This abstraction will be considered in this work. Specifi-

cally, the difficulty for the operation x̄ = x+ ζ to generate a

new tentative solution x̄ such that f(x̄) ≺ f(x) will be studied

here.

III. ANALYTICAL TOOLS FOR THE STUDY OF

PARETO-DOMINANCE SEARCH

In this section, some analytical tools are developed in order

to allow a detailed analysis of the difficulty associated to

Pareto-dominance search in many-objective optimization. The

general strategy to be followed in this section is:

• A very simple, scalable and symmetric problem is stated,

first considering the number of objectives equal to the

number of dimensions of the decision space, i.e. n = N .

This simplification will be removed later. Such a problem

is endowed with a particular geometric structure which

allows the construction of tight bounds for the probability

of generation of a solution that dominates a previous

solution, as a perturbation (mutation) of this solution.

• Some points xd, located in a particular direction, are

chosen in order to become the basis for the analysis of

the process of generation of new points that dominate it.

• The region D(xd) which contains the solutions that dom-

inate xd is determined analytically. A bounding cone Cd
which is tangent to D(xd) is determined, and a spherical

cone Ck which contains Cd is found.

• The hyperspherical cap H(xd, δ) which is the intersection

between the cone Ck and a ball with center in xd and

radius δ is determined. The hyperspherical simplex-cap

X(xd, δ) which is the intersection between the cone

Cd and a ball with center in xd and radius δ is also

determined.

• An upper bound pn(d) for the probability of generation

of a solution which dominates xd is calculated as the ratio

between the areas of the hyperspherical cap H(xd, δ) and

the whole ball. An asymptotic expression for a tighter

bound p∗n(d) for the same probability is then calcu-

lated, using an asymptotic relation between X(xd, δ) and

H(xd, δ). Those expressions for the probability show an

explicit dependency with the number of objectives and

with the distance from xd to the Pareto-set.

All analysis is conducted in the decision variable space. Those

steps are described in the next sub-sections.

A. Analysis-Oriented Problem Formulation

In the order to analyze the specific effect of increasing the

number of objectives in evolutionary multiobjective optimiza-

tion, consider the problem of minimization of the following

set of functions:

fi(x) = ‖x− ei‖2 , i = 1, . . . , n (3)

where ei ∈ R
n, i = 1, · · · , n is the i-th canonical basis

vector (the vector with all coordinates equal to zero except

the i-th one, which is equal to 1), and ‖ · ‖ stands for the

Euclidean norm of the argument vector. This problem presents

the following characteristics:

(i) The functions are convex;

(ii) The functions’ contour sets present spherical symme-

try around their points of minima, which are located

in {e1, e2, . . . , en},
(iii) The Pareto-set is the (n − 1)-dimensional simplex

with vertices in {e1, e2, . . . , en}.2

The feature (i) means that anywhere in the decision variable

space, the local information provided by the samples of the

objective functions will globally indicate the correct direction

in which the Pareto-optimal solutions are located. Features

(ii) and (iii) will be employed here in the construction of

an analytical characterization of the problem difficulty along

some space directions.

The analysis of the behavior of Pareto-dominance based

search on this simple problem has the purpose of allowing the

identification of the structural difficulties related only to the

growth of the number of objectives, removing other possibly

interfering factors such as multi-modality, ill-conditioning,

deceptive behavior, and so forth.

An analysis of a multiobjective problem similar to (3) was

suggested in [16]. However, in that reference the analysis was

only qualitative, and no conclusive results were obtained.

B. Dominating Solutions and Bounding Cones

1) Dominating Solutions: Denote by Sv,δ = {x ∈
R

n | ‖x − v‖ ≤ δ} the closed ball with center in v and

radius δ, and by S̄v,δ = {x ∈ R
n | ‖x− v‖ = δ} the sphere

which is the boundary of Sv,δ. Consider a point xd ∈ R
n such

that xd = (d, d, . . . , d). This point is equally distant from the

individual minima of functions fi, with those distances given

by

r = ‖xd − ei‖ =
√

(n− 1)d2 + (d− 1)2.

The contour sets of the functions fi(x), defined by L̄i,ω =
{x | fi(x) = ω2}, are given by L̄i,ω = S̄ei,ω, while the sub-

level sets defined by Li,ω = {x | fi(x) ≤ ω2} are given by

Li,ω = Sei,ω. Therefore, the set of points which dominate the

point xd, denoted by D(xd), is given by:

D(xd) = Se1,r ∩ Se2,r ∩ . . . Sen,r (4)

2The reader can check this condition by noticing that the Kuhn-Tucker
conditions for efficiency [15] are satisfied within this simplex, and do not
hold outside it.
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2) Distance to the Pareto-Set: The point x
∗
d =

( 1n ,
1
n , . . . ,

1
n ) belongs to the Pareto-set, and it is the Pareto-

optimal point which is nearest to the point xd. The distance

from xd to x
∗
d is denoted by λ = ‖x∗

d − xd‖.

3) Tangent Cone: Let Cd be the convex cone with vertex

in xd and boundaries defined by the n planes Mi which are

tangent to the surfaces S̄e1,r, . . . , S̄en,r on xd, such that Cd ⊃
D(xd).

4) Spherical Cone: Consider the function

Fi(x) = fi(x)− ‖xd − ei‖2, (5)

It should be noticed that S̄ei,r = F−1
i (0). The gradient of

Fi(x) is given by

∇Fi(xd) = ∇fi(xd) = (2d, . . . , 2d
︸ ︷︷ ︸

1,...,i−1

, 2(d− 1), 2d, . . . , 2d
︸ ︷︷ ︸

i+1,...,n

)

The tangent plane to S̄ei,r at xd (plane Mi) is the orthogonal

complement of the line determined by vector ∇Fi(xd). Define

the vector kj as

kj = (d, . . . , d
︸ ︷︷ ︸

1,...,j−1

,−((n− 1)d− 1), d, . . . , d
︸ ︷︷ ︸

j+1,...,n

) (6)

Clearly, ∇Fi(xd) · kT
j = 0 ∀ i 6= j. Therefore:

kj ∈
⋂

i6=j

Mi

Define now a cone Ck with vertex on xd and with spherical

section, such that its boundary surface C̄k contains the lines

passing on xd and with directions given by kj , j = 1, . . . , n.

This means that the cone Cd is inscribed in cone Ck. Clearly:

Ck ⊃ Cd ⊃ D(xd)

The Figure 1 shows a representation of cones Cd and Ck for

the case n = 3.

Fig. 1. Representation of the cones Cd and Ck , for the case n = 3. In this
case, Ck is the cone with circular section and Cd is the cone with triangular
section inscribed in Ck .

C. Intersection Cone-Ball

1) Internal Angle: Let the internal angle of the cone Ck
(which is also the angle between any kj and xd) be denoted

by θ. An expression for θ comes from

cos(θ) =
kj · xT

d

‖kj‖‖xd‖
=

(n− 1)d2 − d2(n− 1) + d
√

(n− 1)d2 + ((n− 1)d− 1)2
√
nd2

=
1√
n

1
√

(n− 1)d2 + ((n− 1)d− 1)2

(7)

The following statements come directly from (7):

• If d→ +∞ then θ → π/2;

• If d = 1/n then θ = 0.

When d = 1/n, the point xd becomes exactly on the Pareto-

set.

2) Hyperspherical Cap and Hyperspherical Simplex-Cap:

The hyperspherical cap obtained from the intersection of sets

S̄xd,δ and Ck is denoted by H(xd, δ). The intersection between

the sets S̄xd,δ and Cd (a hyperspherical simplex-cap) is denoted

by X(xd, δ).
Figure 2 shows a representation of the entities described

previously in this section for the case n = 2.

D. Probability of Generation of a Dominating Solution

Define a random variable vector ζ ∈ R
n with a probability

density function φ(ζ) which obeys

φ(ζ) = φρ ∀ ζ ∈ S̄0,ρ. (8)

This means that φ(ζ) presents a spherical symmetry (φ(ζ) is

equal to a constant φρ for all ζ on a given sphere of radius

ρ), and by consequence ζ has a uniform probability of being

in any space direction. Now, consider a point xz which is

obtained by a perturbation of the point xd by ζ:

xz = xd + ζ (9)

The probability of xz to belong to the cone Ck is given by:

P (xz ∈ Ck) = pn(d) =
A(H(xd, δ))

A(S̄xd,δ)
, (10)

where A(·) represents the area of the argument hyper-surface.

The notation pn(d) is intended to let explicit the dependence of

this probability with the variable d, given a problem dimension

n. The probability of xz to belong to the cone Cd is given by:

P (xz ∈ Cd) = p∗n(d) =
A(X(xd))

A(S̄xd,δ)
, (11)

The notation p∗n(d) is intended to highlight that this probability

is the object of interest in this paper, as long as it constitutes

a tight bound for the probability of success of a perturbation,

in the search for dominating solutions.

The following change of variable is performed on the

functions pn(d) and p∗n(d):

p̃n(λ) = pn

(
1
n + λ√

n

)

p̃∗n(λ) = p∗n

(
1
n + λ√

n

) (12)
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xd

S̄
xd,δ

S̄e2,r

S̄e1,r

e2

e1

M1

M2

xd

S̄
xd,δ

θ

H
xd,δ

M2

M1

Fig. 2. Top: A problem with two variables and two objectives is represented.
The Pareto-set is the line segment between the points e1 and e2. For a given
point xd, the level surfaces S̄e1,r and S̄e2,r are the circles with center in e1

and e2, passing on xd. The tangent lines to S̄e1,r and S̄e2,r , respectively M1

and M2, define the cone Cd which, in the two-dimension case, is equivalent
to the cone Ck . The circle S̄

xd,δ , with center on xd and radius δ is also
represented. The set of points that dominate xd, D(xd), is represented by
the shaded region. Bottom: A zoom on the circle S̄

xd,δ is presented, showing
the angle θ and the hyperspherical cap H(xd, δ).

The function p̃n(λ) represents the probability of xz = xd + ζ

to belong to the cone Ck, and the function p̃∗n(λ) represents

the probability of xz = xd + ζ to belong to the cone Cd. In

both cases, the probabilities are now parametrized in terms of

λ, the distance from xd to the Pareto-set.

The following relations hold:

p̃n(λ) = P (xz ∈ Ck) > p̃∗n(λ) = P (xz ∈ Cd) > P (xz ∈ D(xd))
(13)

1) Expression of pn(d): Now, an analytical description of

the function pn(d) is pursued. In the reference [17], the authors

suggest a way to calculate A(S̄xd,δ) for any n > 1.

Proposition 1 ( [17]): For any n > 1,

A(S̄xd,δ) =
2πn/2δn−1

Γ(n/2)
,

where Γ is the gamma function.

In the reference [18], the authors determine a relationship

between A(S̄xd,δ) and A(H(xd, δ)). This relationship is pre-

sented next.

Proposition 2 ( [18]): For any n > 1,

A(H(xd, δ)) = (1/2)A(S̄xd,δ)Isin2(θ)

(
n− 1

2
,
1

2

)

,

where Iz(p, q) is the regularized incomplete beta function.

The function Iz(p, q) is defined by the incomplete beta

function B(z; p, q) and the (complete) beta function B(p, q)
as follows

Iz(p, q) =
B(z; p, q)

B(p, q)
, (14)

where

B(z; p, q) =

∫ z

0

up−1(1− u)q−1du

B(p, q) =

∫ 1

0

up−1(1− u)q−1du

Now, by using the two previous results, a description of the

function pn(d) is obtained.

Lemma 1: The function pn(d) defined in (10) can be cal-

culated as

pn(d) =
1

2
Isin2(θ)

(
n− 1

2
,
1

2

)

, (15)

where θ is given by

θ = arccos

(

1√
n

1
√

(n− 1)d2 + ((n− 1)d− 1)2

)

.

Some special cases of the Isin2(θ)

(
n− 1

2
,
1

2

)

which were

displayed in [19] are summarized in the Table I.

TABLE I
SPECIAL CASES OF THE pn(d).

n pn(d)

2 θ/π

3 (1− cos(θ))/2

4 (2θ − sin(2θ))/2π

5 (1− (3/2) cos(θ) + (1/2) cos3(θ))/2

The function pn(d) represents the probability of xz = xd+ζ

to belong to the cone Ck, which is an upper bound for the

probability of xz to dominate xd.
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2) Asymptotic Expression for p∗n(d): An asymptotic expres-

sion for p∗n(d), which is valid when xd becomes close to the

Pareto-set, is derived now.

Lemma 2: The following relation holds:

An = lim
λ→0

A(X(d))

A(H(xd, δ))
=

√
n+ 1 Γ

(
n
2 + 1

)

n! πn/2
(√

n
n+1

)n (16)

Proof: Let T (xd, δ) denote the tangent plane to the spherical cap
H(xd, δ) in its center point (this plane is normal to the vector xd).
Then, notice that θ → 0 as λ → 0. Clearly:

lim
λ→0

H(xd, δ) = T (xd, δ) ∩ Ck

Since Ck is a spherical cone and Cd is a polyhedral cone inscribed
in Ck, then:

• A section of Ck by a hyperplane normal to the direction xd is
an (n− 1)-dimensional hypersphere, denoted by Sn−1.

• A section of Cd by the same hyperplane is an (n − 1)-
dimensional simplex inscribed in that hypersphere, denoted by
Xn−1.

• Given n, the ratio between the volume of Xn−1 and the volume
of Sn−1 is a constant An, for any internal angle θ.

Now, noticing that the volume of a unitary ball of dimension n− 1
is given by:

Vol(Sn−1) =
πn/2

(
√

n
n+1

)n

Γ
(

n
2
+ 1

)

and the volume of its inscribed regular simplex is given by:

Vol(Xn−1) =

√
n+ 1

n!

the expression of constant An becomes the expression (16).

The main result of this paper is stated now, as a combination

of lemmas 1 and 2:

Theorem A: The probability p̃∗n(λ) is such that:

(i) lim
λ→0+

p̃∗n(λ) = An−1 p̃n(λ);

(ii) lim
λ→∞

p̃∗n(λ) = 1/2.

E. The case N ≥ n

Now consider a more general situation in which the dimen-

sion of the decision space, N , may be greater than or equal

to the dimension of the objective space, n. Let the decision

variable vector x be decomposed into two sub-vectors xl ∈ R
n

and xh ∈ R
N−n:

x =

[
xl

xh

]

, xl =











x1

...

xi

...

xn











, xh =






xn+1

...

xN




 (17)

In terms of subspaces:

x ∈ X = R
N , xl ∈ Xl , xh ∈ Xh

X = Xl ⊕Xh

(18)

The same n objective functions fi(x) are considered:

fi(x) = ‖x− ei‖2 , i = 1, . . . , n (19)

Now ei ∈ R
N , with i = 1, · · · , n, for n ≤ N , still means

the i-th canonical basis vector. The Pareto-set of problem

(19), when projected onto the space R
n, corresponds to the

same Pareto-set of problem (3). Each objective function in

expression (19) may be written as:

fi(x) = f l
i (xl) + fh

i (xh)

f l
i (xl) = x2

1 + . . .+ (xi − 1)2 + . . .+ x2
n

fh
i (xh) = fh(xh) = x2

n+1 + . . .+ x2
N

(20)

With those entities, it becomes possible to describe the pro-

gression of a Pareto-dominance based evolutionary multiob-

jective optimization algorithm in the task of minimization of

functions (19), as follows:

• Let the algorithm start on a point that does not belong

neither to Xl nor to Xh, for instance the point x0 given

by:

x0 =

[
x
l
0

x
h
0

]

• Consider the tentative point x̄ = x0 + ζ. Decompose x̄

as:

x̄ =

[
x̄l

x̄h

]

such that x̄l ∈ Xl and x̄h ∈ Xh.

• For small perturbations ζ, the probability of x̄l dom-

inating x
l
0 concerning the objective function f

l(xl) is

given by p̃∗n(λ), which is described by Theorem A, case

(i), in the interesting case of x0 close to the Pareto-set.

On the other hand, the probability of x̄h dominating x
h
0

concerning the objective function f
h(xh) is equal to 0.5,

no matter the number of space dimensions N and the

values of the coordinates of xh.

• In this situation of x0 close to the Pareto-set, the follow-

ing outcomes of mutations may occur:

(a) There will be situations in which f
l(x̄l) ≺

f
l(xl

0), which will occur with probability

lim
λ→0+

p̃∗n(λ) = An−1 p̃n(λ).

(b) There will be situations in which f
h(x̄h) ≺

f
h(xh

0 ), which will occur with probability 0.5.

• Therefore, the probability of a small perturbation ζ to

produce a new point x̄ = x0 + ζ which satisfies both (a)

and (b) is given by:

pN (λ) =
1

2
An−1 p̃n(λ) (21)

However, it is possible that a x̄ that dominates x0 may oc-

cur, in some cases, without the simultaneous satisfaction

of conditions (a) and (b), because the objective functions

are composed of sums of functions f l
i and fh, as shown in

(20), which means that an increment in a function may be

compensated by a decrement in another one, still leading

to a decrement in the sum. Therefore, the expression (21)

represents a lower bound on the probability of generation

of a x̄ that dominates x0.
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IV. SIMULATION STUDIES

Three issues are investigated now. The first one is the

range of validity of the asymptotic expression for p̃∗n. It is

important to know what is the range of λ in which the

asymptotic expression presented in Theorem A provides a

good approximation for p̃∗n. The second issue is the effect of

the point x which is to be enhanced to be outside the specific

direction xd. It is relevant to understand to what extent the

analysis performed on the line xd can be extended to points

in other directions. The third issue is related to the validity of

the lower bound stated in expression (21) for the probability

of generation of a solution that dominates the current one in

the case N > n. These three questions are difficult to deal

analytically; therefore they will be addressed via simulation

studies in this section.

A. Range of Validity of Asymptotic Expression

In order to evaluate the range of validity of the asymptotic

formulation for the probability p̃∗n(λ), a series of simulation

studies was conducted here. In the simulations, for each n ≥
2 and for 50 values of λ logarithmically distributed in the

interval [10−3, 101], points xz = xd + ζ are generated with ζ

normally distributed, with zero mean and standard deviation

σ = λ × 10−3. With such a standard deviation, all points

become close to xd, which makes the gap between D(xd) and

Cd to become small. Such a standard deviation also guarantees

that no point is generated on the other side of the Pareto-set.

For each n and each λ, a total number of 108 realizations of

xz are generated, and the proportion of elements that dominate

xd is then observed.

10-3 10-2 10-1 100 101 102
10-12

10-10

10-8

10-6

10-4

10-2

100

n=2

n=3

n=4

n=5

asymptotic

λ

lo
g
(p̃

∗ n
(λ

))

Fig. 3. In logarithmic coordinates, a simulation of the Pareto-dominance
relation for different values of n.

The Figure 3 presents the simulation results superimposed

to the asymptotic values of p̃∗n(λ) that are furnished by

Theorem A. It can be noticed that in the intervals λ < 10−1

and λ > 10, the simulation results are in good agreement

with the predicted values. Only in the interval 10−1 < λ < 10
the actual values of p̃∗n(λ) are not accurately predicted by the

asymptotic formulae.

TABLE II
PARAMETERS OF POWER LAW EQUATION (22) FOR DIFFERENT VALUES OF

n, CALCULATED FOR λ = 1× 10−4 AND λ = 5× 10−4 .

n cn γn
2 0.4502 1.0000
3 0.6202 2.0000
4 1.0807 3.0000
5 2.2207 4.0005

The most noticeable feature that can be observed in the

behavior of p̃∗n(λ) is the presence, for all values of n, of a

knee nearby the position λ = 1 (or λ = 100), which separates

the graphic of p̃∗n(λ) in three distinct regions:

• For λ > 10, p̃n(λ) ≈ 0.5, which means that it is

uniformly easy to find an xz which dominates xd when

xd is located in this region;

• For λ < 0.1, the graphic of p̃n(λ) approaches a line, in

logarithmic scale, which indicates a power law behavior;

• There is a region of transition between the former regions

(the knee), for 0.1 ≤ λ ≤ 10.

The power law that holds for λ < 0.1 should be given by:

p̃∗n(λ) = cn λ
γn (22)

The values of parameters cn and γn, for n = {2, 3, 4, 5},
calculated with the values provided by Theorem A for λ =
1× 10−4 and λ = 5× 10−4 are shown in Table II.

It is noticeable that the estimated power law exponent γn
seems to be equal to (n− 1). The small deviation in γ5 may

be attributed to the numerical errors that may arise in the

computation of a fraction of two very large numbers which

appear in the asymptotic expression of Theorem A as n grows.

B. Arbitrary Points

When a point x is nearby the Pareto-set P , there are two

possible situations: the projection of the point into the P may

be on the relative interior of the Pareto-set, or that projection

may be on the relative boundary of P . In the second case,

the probability of enhancement would become much greater

than in the case of points whose projection fall on the relative

interior of the Pareto-set – this situation approximates the

case in which the points to be determined are Pareto-optimal

solutions of reduced-order problems involving a subset of

the objective functions. It is a well-known fact that this is

much easier than the determination of solutions of the full

multiobjective problem.

Clearly, the relevant situation for the generation of solutions

that cover the Pareto-set P is that of points whose projection

fall in the relative interior of P . In order to consider points

that represent this situation, the following experiment was

performed for the dimensions n = 2, n = 3, n = 4 and n = 5,

in each case considering λ = 0.1, λ = 0.05 and λ = 0.01:

(i) A random convex combination xp of the extremal

points of the Pareto-set is generated with uniform

probability distribution of the combination coeffi-

cients. The point xp generated in this way is a Pareto-

set point. A unitary vector ud normal to the Pareto-

set is determined.
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TABLE III
SIMULATED PROBABILITY OF ENHANCEMENT OF A POINT SITUATED AT A

DISTANCE λ FROM THE PARETO-SET, IN 100 EXPERIMENTS, FOR

DIFFERENT VALUES OF n. p05 : 5% PERCENTILE, p50 : 50% PERCENTILE,
p95 : 95% PERCENTILE.

n p05 p50 p95 Theo. A

2 4.45E-2 5.10E-2 1.34E-1 4.47E-2
λ = 0.1 3 6.12E-3 8.56E-3 1.90E-2 5.94E-3

4 1.09E-3 1.75E-3 4.72E-3 9.43E-4
5 2.40E-4 4.43E-4 1.18E-3 1.63E-4

2 2.24E-2 2.44E-2 9.44E-2 2.25E-2
λ = 0.05 3 1.59E-3 2.36E-3 1.02E-2 1.53E-3

4 1.45E-4 2.61E-4 1.33E-3 1.30E-4
5 1.58E-5 3.46E-5 1.51E-4 1.28E-5

2 4.45E-3 4.98E-3 2.44E-2 4.50E-3
λ = 0.01 3 5.84E-5 9.56E-5 4.13E-4 6.20E-5

4 1.03E-6 1.78E-6 1.22E-5 1.08E-6
5 2.50E-8 5.50E-8 3.86E-7 2.21E-8

(ii) A point x is chosen, such that x = xp + λud.

(iii) Random points xz = x + ζ are generated with ζ

normally distributed, with zero mean and standard

deviation σ = λ × 10−3. A total number of N
realizations of xz are generated, and the proportion

of elements that dominate x is then observed. The

value of N is chosen such that the expected number

of xz points which dominate x is at least 30, for

each value of n, according to the asymptotic estimate

provided by Theorem A.

The experiment was repeated 100 times for each combination

of values of n and λ. The Table III summarizes the results of

those experiments.

The data on Table III suggest that the asymptotic value of

p̃∗n(λ) provided by Theorem A corresponds to the smallest

value observed, in each case. This means that the “most

difficult” direction for finding an enhancement is exactly xd.

In all cases, 50% of the points have a probability of being

enhanced that is less than twice the asymptotic value of p̃∗n(λ).
Also in all cases, 95% of the points have a probability of

being enhanced which is up to 10 times the asymptotic value

of p̃∗n(λ).

This means that, although the asymptotic value of p̃∗n(λ)
cannot be interpreted as a specific probability of enhancement

of a point which is situated at a distance λ to the Pareto-set,

this value can be used as a predictor for the order of magnitude

of such a probability of enhancement.

A more insightful analysis is obtained from the observation

of the parameters of the power law model which are estimated

from the data displayed in Table III. Using the values of

p̃∗n(λ) which are estimated for λ = 0.01 and λ = 0.05,

different power law models are obtained for the 5%, 50% and

95% percentiles of p̃∗n. The resulting values of parameters are

presented in Table IV.

The data in Table IV suggests that the multiplicative con-

stant cn presents large variations when considering points

in different relative positions to the Pareto-set, although still

within one order of magnitude of variation. The power law

exponent γn presents a more stable behavior, remaining nearby

the value n − 1 for all samples that were considered in the

simulation. This means that the rate in which the problem be-

TABLE IV
VALUES OF THE POWER LAW PARAMETERS γn AND cn , FOR DIFFERENT

VALUES OF n, ESTIMATED FOR THE DATA PRESENTED IN TABLE III.

n γ05 γ50 γ95 γ: Theo. A

2 1.0042 0.9874 0.8406 1.0000
3 2.0530 1.9922 1.9924 2.0000
4 3.0739 3.0992 2.9150 3.0000
5 4.0069 4.0041 3.7089 4.0005

n c05 c50 c95 c: Theo. A

2 0.4536 0.4699 1.1713 0.4502
3 0.7454 0.9221 3.9885 0.6202
4 1.4472 2.8102 8.2479 1.0807
5 2.5810 5.6036 10.1002 2.2207

comes more difficult as the distance to the Pareto-set decreases

is approximately the same, for a given n, no matter the value

of that distance, for almost all relative positions between the

point to be enhanced and the Pareto-set.

By noticing that the value of γn in the 95% percentile

becomes smaller than (n− 1) but stays always nearer to this

value than to (n − 2), it may be conjectured that the points

nearby the edges of the Pareto-set will present a behavior

which takes part of the smaller dimension of that edge. In

other words, the search for points on (n−2)-dimensional edges

of the Pareto-set is similar to a multi-objective optimization

with (n − 1) objectives, which will be performed with an

exponent γ = n − 2. The points which are on the (n − 1)-
dimensional Pareto-set, in positions nearby those (n − 2)-
dimensional edges, will be pursued with a γ value which is

smaller than (n− 1), but which is lower-bounded by (n− 2).
Of course, as the points to be found approach an (n − i)-
dimensional edge, the value of γ reduces to (n− i), up to the

case in which the n single-objective solutions (which are zero-

dimensional objects) are pursued, which can be performed

with γ = 0, without any performance degradation. This

observation is exploited in the reference [20], which performs

searches on the corners of the Pareto-set of many-objective

problems.

C. The case N > n

Finally, in order to examine the situation in which the

number of dimensions of the decision variable space is greater

than the number of dimensions of the objective space. An

experiment was conducted considering the problem (19) with

n = 4 and values of N in the range N ∈ {4, 5, 6, 7, 8, 9}.
Points xz = xd + ζ were generated for a xd = x

∗
d + d.v,

with v = (1, . . . , 1) and d ∈ {10, 1, 0.1, 0.01, 0.01}. ζ was

normally distributed, with zero mean and standard deviation

σ = 10−4. For each N , a total number of 108 realizations

of xz were generated, and the proportion of elements that

dominate xd was observed.

The results of this experiment are shown in Table V. It

is noticeable that, no matter the value of N , the empirical

probability of xz ≺ xd remains almost the same for the same

d. It seems that, considering the power law (22), the exponent

γn does not change for different values of N , and only the

constant cn varies. It is also noticeable that the probability of

domination is slightly higher for greater values of N .
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TABLE V
EMPIRICAL PROBABILITIES OF xz ≺ xd , FOR n = 4 AND DIFFERENT

VALUES OF N AND d.

N
d 4 5 6 7 8 9

10 4.79E-1 4.82E-1 4.83E-1 4.85E-1 4.86E-1 4.86E-1
1 3.09E-1 3.27E-1 3.41E-1 3.51E-1 3.60E-1 3.68E-1

0.1 7.28E-3 9.79E-3 1.24E-2 1.51E-2 1.78E-2 2.06E-2
0.01 8.84E-6 1.22E-5 1.61E-5 1.98E-5 2.55E-5 2.87E-5
0.001 1.00E-8 1.40E-8 1.40E-8 2.90E-8 1.60E-8 3.10E-8

In order to examine the meaning of the slight growth in the

probability of generation of a new point that dominates the

current one for greater values of N , another experiment was

performed. A sequence {x}k was generated such that:

x̄ = xk + ζ

if x̄ ≺ xk

then xk+1 ← x̄

else xk+1 ← xk

This iteration was run for n = 4, and N ∈ {4, 9}. ζ was

normally distributed, with zero mean and standard deviation

σ = 10−4, and 3× 108 realizations of xz were generated for

each value of N . The distances dl(k) and dh(k) were defined

as the distance from xk to the Pareto-set when the variables

are projected respectively into the subspaces Xl and Xh. Those

distances are shown in Figure 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-8

-7

-6

-5

-4

-3

-2

-1

0
×10-3

Fig. 4. The line with ✷ indicates the distance dl(k) for N = 4. The line
with ◦ indicates the distance dl(k) for N = 9, and the line with ∗ indicates
the distance dh(k) for N = 9. The vertical axis represents the distance in
relation to the initial point of the sequence. The horizontal axis represents the
ordering of the successful steps (the non-successful trials are not represented
in the graphics).

Consistently with the higher probability of generation of a

dominating point for greater values of N , as shown in Table

V, the Figure 4 shows that dl(k) decreases slightly faster for

N = 9 than for N = 4. However, for N = 9, both dl(k) and

dh(k) have a non-monotonic behavior: there are some points

in which one of those distances increases, associated with a

decrease in the other one.

V. PROGRESSION OF PARETO-DOMINANCE SEARCH

In all the analysis to be developed in this section it should

be noticed that, in the multiobjective optimization problem

considered here, the functions are scaled such that the distance

between any two points of minimum (points in which an

objective function reaches its minimum value) is equal to√
2 ≈ 1.414. Therefore, when a distance λ from a point xd

to the Pareto-set is mentioned: if this distance is greater than

10, this means that the order of magnitude of that distance

is greater than the order of magnitude of the length of the

Pareto-set, while if this distance is less than 0.1, this means

that the order of magnitude of that distance is smaller than the

order of magnitude of the length of the Pareto-set.

The general picture that emerges from the study developed

in this work is: Pareto-dominance based multiobjective opti-

mization algorithms will present a two-stage convergence to

the Pareto-set. In the first stage, a set of solutions initially

far from the Pareto-set will converge to a region R which

contains the Pareto-set P . The region R includes points which

are distant from the Pareto-set up to distances of the order of

the length of the Pareto-set itself, in the following sense:

max
xr∈R,xp∈P

‖xr − xp‖ ≈ max
xp1,xp2∈P

‖xp1 − xp2‖ (23)

In this expression, the notation (≈) means “is of the same

order of magnitude as”. The right side of expression (23) is

the “length” of the Pareto-set. This first stage is expected to be

performed efficiently, with a high success rate in the generation

of solutions that dominate the current ones. In the second stage

the solutions, now located in R, will converge to a vicinity of

the Pareto-set P:

‖x− x̄P‖ < ǫ (24)

in which x ∈ R is a current solution, and x̄P ∈ P is its

projection in the set P . As ǫ becomes smaller, it becomes

more difficult to achieve new solutions that enhance the current

solution x. The growth of the difficulty becomes faster for a

greater number of objectives n, as described by the power law

(22).

Then, an analysis of the progression of a basic Pareto-

domination based evolutionary algorithm can be stated as

follows:

New tentative solution points that dominate xd are easily

found when xd is up to the distance of 1 from the Pareto-

set, with a success rate of approximately 1 : 2 (for each

two attempts, one dominating point is found). This occurs

no matter what is the number of objectives. This behavior

may be interpreted as: in locations far from the Pareto-set, the

objectives become mostly “non-conflicting”, i.e., the directions

in which they are enhanced almost coincide, for all functions.

In this region of λ > 1, the multiobjective optimization

problem behaves like a single-objective optimization problem.

Therefore, it is always easy to find the location of the Pareto-

set, up to a resolution of the order of its length.

When xd enters a region in which its distance to the

Pareto-set is smaller than 1, the further enhancements become

exponentially more difficult as the point approaches the Pareto-

set, for any number of objectives n ≥ 2, according to the
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power law (22). This occurs even in the cases of n = 2
and n = 3, which are not usually considered to give rise to

“many-objective problems”. The enhancement of a solution at

a distance of λ = 0.1, in the case of n = 3, is performed with

a success rate of approximately 6 : 103. In this way, it is still

practical to generate solutions that are “reasonably nearby”

the Pareto-set, perhaps situated into a distance of 10−2 of it.

Further enhancements in such solutions would be performed,

in the case n = 3, at a success rate of 1 : 104, which begins to

become computationally hard. This explains the need, which

has been pointed out in several references [21], [22], of a local

search mechanism when solutions with higher precision are re-

quired in Pareto-dominance based multiobjective optimization,

even for a small number of objective functions.

As n grows, the power law exponent γn also grows,

according to the relation γn = n − 1, which holds for the

computational search of most of the points belonging to the

Pareto-set. In the case n = 4, which is the first situation

considered usually as a “many-objective optimization”, when

the distance of xd to the Pareto-set is smaller than 1, the

enhancement of solutions which already have a precision of

10−3 would be performed with a success rate as low as 1 : 109.

For n = 5, the enhancement of solutions with such a precision

would be performed with a success rate as low as 2 : 1012.

Those numbers explain why the optimization of multiobjective

problems with more than 4 objectives has been found to be a

hard problem, in the context of Pareto-dominance methods.

VI. DISCUSSION: DECOMPOSITION-BASED ALGORITHMS

The difficulty associated to Pareto-domination schemes for

solution ranking in algorithms for many-objective optimization

was described earlier in this paper as the phenomenon of

fast decrease of the relative size of the space region which

contains points that dominate current solutions. The proba-

bility of generation of any such a point rapidly approaches

zero, leading those algorithms to stagnate when the search

reaches regions in which there is conflict between the (many)

objectives. Analytical formulae were derived, showing a pre-

cise description of this phenomenon for isotropic mutation

operators, in an artificial setting of a problem that was built

with several symmetries that allowed the analysis. However,

in more general situations, the same phenomenon will also

occur, although not obeying exactly the same formulae. A

very important observation is: the deep cause of the difficulty

lies in the collapse of the size of the region that contains

dominating solutions, and not in the particular structure of

the isotropic mutation. Any stochastic search operator (non-

isotropic mutation operators, crossover operators, etc) would

face the same problem, if it is committed to finding new points

that dominate current ones.

The empirical observation of this fact has driven research

efforts to solve this problem into the general direction of de-

veloping solution ranking methods that do not rely on Pareto-

dominance in order to induce a convergence pressure towards

the Pareto-set. One of the main ideas that were pursued was

to employ decomposition-based algorithms. Those algorithms

try to solve multiobjective problems by decomposing them

into several scalar problems. Since each resulting optimization

problem is a single-optimization problem, it should not be

affected by the difficulties related to many-objective optimiza-

tion. A strong motivation of this approach was inherited from

the classical nonlinear programming theory of multiobjective

optimization [15], which showed that some formulations of

scalar optimization problems that aggregate the different ob-

jectives are able to guarantee that: (i) any solution of the scalar

problem is a Pareto-optimal solution; and (ii) any Pareto-

optimal solution may be found by an instance of the scalar

problem. In the discussion that follows, the conjunction of

those properties will be referred as the Pareto-equivalence

property.

Even before the subject of many-objective optimization

received so much attention, there were attempts to use decom-

position methods in evolutionary multiobjective optimization,

which resulted in important evolutionary algorithms, such as

the MOEA/D [23]. In recent years, a large number of works

has been devoted to the development of decomposition-based

algorithms in order to deal with many-objective optimization

problems. However, it is noticeable that some scalarization

procedures that were employed successfully in the traditional

setting of few objectives were not found to be good choices in

the many-objective setting, while one scalarization procedure

that was not so popular before became the most used one in

the new setting. In this section, the analytical tools that were

developed in this paper are applied in order to provide an

interpretation of those issues.

1) Weighted sum:

minF (x) =

n∑

i=1

ωifi(x) (25)

In this case, the problem behaves as a single-objective prob-

lem, in which the evolutionary algorithm finds an enhancing

point with probability 0.5, provided that the new tentative

point is generated sufficiently near the current point. This is

due to the fact that a weighted sum of smooth functions is a

smooth function and therefore its contour curve passing on a

point x0 will have a tangent plane on that point which will

represent an asymptotic local approximation of the contour

curve on x0. Therefore, any direction from x0 pointing into

the semi-space which (at least locally) contains the contour

curves will be an enhancing direction for F (x) on x0. The

main objections to this approach are its lack of ability to

find points on non-convex portions of the Pareto-set (the

Pareto-equivalence property does not hold) and its difficulty in

relating the values of the weights and the region of the Pareto-

set to be sampled. The initial proposition of the MOEA/D

algorithm [23] proposed the weighted sum scalarization as one

of its three recommended decomposition methods. However,

perhaps due to that objections, this scalarization procedure

has not reached popularity in subsequent works, neither in the

multiobjective setting, nor in the many-objective one. In the

recent literature on many-objective optimization, the weighted

sum approach appears in [24], as one among four different

scalarization methods.
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2) Weighted Tchebyschev norm:

minF (x) = max
i

ωi(fi(x)− f
ref
i ) (26)

In this expression, f
ref = (f

ref
1 , f

ref
2 , . . . , f

ref
n ) stands for

a reference point in the objective space. This scalarization

procedure was also used within MOEA/D [23]. This scalar

problem is endowed with the Pareto-equivalence property.

Perhaps due to this reason, this scalarization scheme became

very popular in applications of MOEA/D. However, in the

recent research on many-objective optimization, this procedure

has not achieved popularity.

This phenomenon can be explained using the tools proposed

here. In the case of the weighted Tchebyschev norm, in a small

vicinity of x, the region in which F (x) decreases corresponds

to the interior of the contour curve of the function fj(x), for

the j for which occurs the maximum value of ωj(fj(x)−f ref
j ).

This means that, if such a maximizing j is unique, a tangent

plane to a contour curve of fj(x) will define a whole semi-

space of enhancing directions for F (x) as in the case of the

weighted sum of objectives. However, it should be recalled that

the region in which all the functions fi(x) become enhanced

simultaneously will shrink as the number of objectives grows,

as shown in this paper. This means that the enhancement of

fj(x) will tend to occur with a degradation of other objective

functions fi(x). So, on each step of the search procedure, the

new point xk+1 will tend to be closer to the curve F defined

by

F =
{

x | ω1(f1(x)− f
ref
1 ) = ω2(f2(x)− f

ref
2 ) =

. . . = ωn(fn(x)− f
ref
n )
}

(27)

than its predecessor x
k. Once on that curve, any new en-

hancement on the scalar function F (x) will occur only by

finding new points that dominate the current one – in this

way falling back into the same problem of Pareto-dominance

search. This process of the search sequence converging to the

curve F is quite similar to the well-known Maratos effect

that may appear when classical nonlinear programming line

search algorithms are applied to non-smooth problems [25].

The search sequences in those line search algorithms tend to

be attracted to the region in which the function is non-smooth,

becoming trapped in that region.

In this way, it is expected that the minimization of a

scalar Tchebyschev decomposition as shown in (26) goes

farther than a pure Pareto-dominance search, because the

algorithm presents some progress towards the Pareto-set while

the sequence approaches the curve F . However, it is possible

that the search sequence converges to F before reaching the

Pareto-set, becoming trapped on that curve.

3) Weighted 2-norm:

minF (x) =

√
√
√
√

n∑

i=1

ω2
i (fi(x)− f

ref
i )2 (28)

The problem (28) is traditionally known as the goal pro-

gramming formulation. Similarly to the case of weighted sum

scalarization, the problem here behaves as a single-objective

smooth problem, provided that the objective functions are

smooth. The geometric reasoning here is the same as in the

case of weighted sum: again, the scalar function F (x) is a

smooth function, and a tangent plane to a contour curve will

locally define a whole semi-space of enhancing directions.

In this case, differently from the case of weighted sum, it

becomes possible to manage the reference point f ref, in order

to find any point on the Pareto-set. However, the formulation

does not present the Pareto-equivalence property, since non

Pareto-optimal points can be generated. However, the main

difficulty of formulation (28) is related to the choice of the

suitable locations for the reference points.

It is noticeable that this kind of decomposition strategy was

not that popular in decomposition algorithms in the classical

multiobjective setting, with few objectives. However, in the

context of many-objective problems, this approach has been

used in several recent references. For instance, [24] employs

this scalarization procedure directly as one of the ranking

methods to be used within its algorithm. The references [26]

and [27] employ this scalarization procedure within a two-

step ranking routine, in which a goal programming ranking

subproblem is solved after the candidate solutions are assigned

to their respective reference points. The references [28], [29]

also employ weighted 2-norms in order to rank solutions.

4) Goal-attainment formulation:

minF (x) = α

s.t. fi(x) ≤ f
ref
i + αωi

(29)

This is another classical formulation of a scalarization for a

multiobjective problem [15], which also complies with the

Pareto-equivalence property. This formulation was employed

within some evolutionary multiobjective optimization algo-

rithms (see, for instance, [22]). In MOEA/D [23], a slightly

different formulation was employed, as follows:

minF (x) = α

s.t. fi(x) = f
ref
i + αωi

(30)

This formulation is called the Boundary Intersection Approach

in [23]. It is easy to verify that this formulation does not

present the Pareto-equivalence property, since it may deliver

output points that are not Pareto-optimal. In order to manage

the equality constraint, the reference [23] proposed the usage

of the following penalty approach:

minF (x) = d1(x) + θd2(x) (31)

in which:

d1(x) =
‖(f(x)− f

ref) · ω‖
‖ω‖

d2(x) = ‖f(x)− (f ref − d1ω)‖

(32)

This formulation was called the Penalty-based Boundary In-

tersection, or PBI, in [23]. This function was used as the third

recommended scalarization function in that reference.

It is interesting to notice that the goal attainment scalar-

ization in its original formulation (29) has a geometry that is

equivalent to the geometry of the weighted Tchebyschev norm
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minimization, leading to an equivalent behavior. This means

that such a formulation would present the same difficulties than

the scalarization via weighted Tchebyschev norm, in dealing

with many-objective problems.

The PBI approach, on the other hand, presents a penalty

factor θ which can modulate the algorithm behavior. In any

case, except for θ = 0, the contour curves of the function

F (x) will be non-smooth, with a vertex that will lie on the

reference direction. For θ = 1, the behavior of PBI will be

identical to the behavior of the weighted Tchebyschev norm.

For 0 < θ ≤ 1, the region that contains solutions that enhance

the PBI of a previous solution will be greater than in the case

of the weighted Tchebyschev norm, while for θ > 1 this region

will be smaller. In any case, it is expected that the Maratos

effect that was predicted for the weighted Tchebyschev norm

will also occur for the PBI solution ranking, with the solution

sequence being attracted to the reference line, without further

convergence to the exact Pareto-set after the convergence to

that line.

The PBI function inspired the decomposition employed in

the references [26], [27], [29], which employed a hierarchical

composition of d1 and d2, and it was used again in its original

format in [30].

VII. CONCLUSION

This paper presented an analytical study of the phenomenon

of performance degradation of Pareto-dominance based search

algorithms in many-objective problems with continuous vari-

ables. Within a simple setup of n quadratic objective functions

with spherical contour curves and a symmetrical arrangement

of the function minima location, some analytical formulae that

describe the probability of progress of the optimization process

as a function of the distance λ to the exact Pareto-set were

derived.

The main conclusion that was obtained about the nature

and structure of the performance degradation phenomenon in

many-objective problems can be stated as the observation that

the search occurs in two distinct phases:

(i) When the current tentative solution is at a distance

λ greater than the length of the Pareto-set, the prob-

ability of success in enhancing the current solution

is high;

(ii) When the current solution reaches a λ which has its

order of magnitude smaller than that of the length of

the Pareto-set, the probability of finding a new point

that dominates the current one is given by a power

law function of λ with exponent (n− 1).
(iii) The dimension of the decision variable space, N , has

no influence on that exponent, influencing only the

multiplicative coefficient of the power law.

Those conclusions were derived considering isotropic mu-

tation operators, in an artificial setting of a problem that

was built with several symmetries that allowed the analysis.

However, the same phenomenon will occur in more general

situations of many nonlinear and smooth objective functions,

although not obeying exactly the same formulae. It is impor-

tant to notice that the deep cause of the convergence difficulty

of Pareto-based ranking schemes lies in the collapse of the size

of the region that contains dominating solutions, and not in the

particular structure of the isotropic mutation. Any stochastic

search operator (non-isotropic mutation operators, crossover

operators, etc) would face the same problem in the task of

finding new points that dominate current ones.

The results obtained here provide a theoretical framework

that articulates most of the previous studies about the structure

of many-objective optimization problems, as well as explains

the causes of success or failure of algorithmic schemes pro-

posed in the last few years.
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