Redução com monóxido de carbono

Nesse tópico a redução com monóxido de carbono (CO) será estudada, é importante destacar que, assim como para a redução com hidrogênio, essa reação também é uma reação entre um gás e um sólido, isto é, nesse momento a redução com monóxido de carbono será analisada como se uma fonte de CO estivesse conectada ao forno e fornecendo uma mistura gasosa com quantidade fixa de CO. Dessa forma, a pressão de oxigênio na atmosfera do sistema é controlada através da seguinte equação química:

$$2CO + O_2 = 2CO_2 \qquad \qquad \Delta G^0 = 173,4T - 565.140 \tag{1}$$

A equação química geral para a redução de um óxido qualquer pelo CO é dada por:

$$MO + CO = M + CO_2 \tag{2}$$

A redução com monóxido de carbono é de fundamental importância para os processos metalúrgicos, pois esse gás redutor pode ser gerado de forma barata através da queima de diferentes combustíveis orgânicos. Esse gás redutor não é utilizado para a redução de óxidos metálicos que possuem grande tendência a formar carbetos, como visto anteriormente, esses óxidos metálicos são reduzidos através da utilização de hidrogênio ou submetidos à operação de redução metalotérmica.

O monóxido de carbono é um melhor agente redutor que o hidrogênio em baixas temperaturas e o hidrogênio é um melhor redutor em altas temperaturas¹.

Em todos os processos metalúrgicos de redução onde se utiliza de uma fonte de carbono como agente redutor o monóxido de carbono também está atuando como agente redutor.

Diagrama de Ellingham de formação de óxidos (Redução com CO)

A Figura 1 abaixo mostra o diagrama de Ellingham para a formação de óxidos e a reta que representa a reação química (1). As equações químicas e os valores de ΔG^0 como função da temperatura para as retas representadas na Figura 1 são mostrados abaixo:

1

¹ Isso será explicado de forma mais clara nas próximas notas de aula.

$$2CO + O_2 = 2CO_2$$
 $\Delta G^0 = 173,4T - 565.140$ (1)

$$2\text{Fe} + O_2 = 2\text{FeO}$$
 $\Delta G^0 = 130,5\text{T} - 528.550$ (3)

$$\Delta G^0 = 174,1T - 472.060$$
 (4)

$$Si + O_2 = SiO_2$$
 $\Delta G^0 = 174,7T - 906.020$ (5)

$$Mn + O_2 = MnO$$
 $\Delta G^0 = 151,1T - 772.590$ (6)

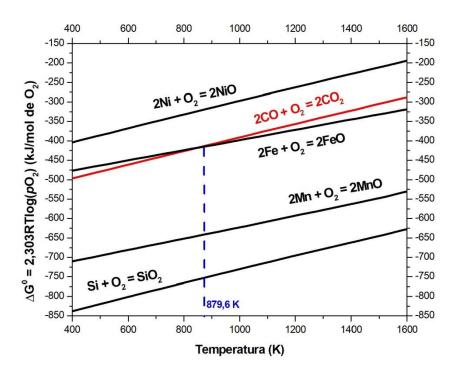


Figura 1. Diagrama de Ellingham de formação de óxidos.

A equação (1) representa os valores de ΔG° para uma mistura com razão $pCO_2/pCO=1$ em diferentes temperaturas e o diagrama mostra que a reta representando esse equilíbrio químico (reta tracejada vermelha) está acima das retas que representam os equilíbrios químicos para as reações de formação dos óxidos de silício e de manganês e, por isso, essa mistura gasosa não é capaz de reduzir os óxidos de manganês e silício. Por outro lado, essa mesma reta está abaixo da reta que representa a reação de formação do óxido de níquel em todo o intervalo de temperatura apresentado no diagrama, por isso, essa mistura gasosa é capaz de reduzir o níquel. Finalmente, o diagrama mostra também que para temperaturas menores que 879,6 K uma mistura

gasosa com razão $pCO_2/pCO = 1$ é capaz de reduzir o FeO² para Fe⁰, no entanto, para temperaturas maiores que 879,6 K essa mesma mistura não é capaz de reduzir esse óxido. A temperatura máxima para a redução do óxido de ferro por essa mistura gasosa pode ser encontrada igualando as equações (1) e (3):

$$172,1T - 565.140 = 130,5T - 528.550$$

 $172,1T - 130,5T = 565.140 - 528.550$
 $T = 879,6 \text{ K}$

O diagrama da Figura 1 também pode ser explicado comparando os valores de pO₂ externa, gerado pela mistura gasosa, com os valores de pO₂ interna dos diferentes óxidos. A Figura 2 mostra um diagrama de Ellingham com as retas representando as isobáricas de pO_2 (retas tracejadas vermelhas e azuis claras) onde é possível observar que, para qualquer temperatura, o valor de pO2 interna para a reação de oxidação do óxido de níquel (pontos onde as isobáricas de oxigênio cruzam a reta de equilíbrio para a oxidação do níquel) é maior que o valor da pressão externa de O₂ gerada pela mistura gasosa com razão $pCO_2/pCO = 1$ (pontos onde as isobáricas de oxigênio cruzam a reta de equilíbrio para a reação (1) - reta verde). Como a pressão exercida pela mistura gasosa é menor que a pressão interna para o óxido de níquel, pode-se afirmar que essa mistura será capaz de reduzir esse óxido. Por outro lado, os valores de pO2 interna para os óxidos de silício e manganês (pontos onde as isobáricas de oxigênio cruzam a reta de equilíbrio para a oxidação desses metais) são sempre menores que os valores de pO₂ externa para a mistura gasosa (pontos onde as isobáricas de oxigênio cruzam a reta de equilíbrio para a reação (1) – reta verde) e, por isso, pode-se afirmar que essa mistura gasosa é oxidante para esses dois óxidos, isto é, os óxidos não serão oxidados. Finalmente, para o óxido de ferro a pressão de oxigênio gerada pela mistura gasosa será menor que a pressão interna de O2 para temperaturas menores que 879,6 K e será maior que a pressão interna de O2 para temperaturas maiores que 879,6 K e, por isso, essa mistura gasosa só será capaz de reduzir o FeO em temperaturas menores que 879,6 K.

Para quantificar o que foi dito no paragrafo anterior, os valores de pO_2 para as diferentes reações químicas são destacados na Figura 2 à temperatura de 1400 K. Os cálculos para determinar esses valores nessa temperatura são mostrados abaixo:

3

² Como foi visto nas notas de aula anteriores, o ferro possui outros estados de oxidação e, para uma análise correta do diagrama todas as espécies deveriam ser consideradas, como o interesse dessa nota de aula é simplesmente mostrar como interpretar a reta gerada pela equação (1) apenas a espécie (FeO) foi utilizada.

Para o equilíbrio Ni/NiO

$$2Ni + O_2 = 2NiO$$

$$\Delta G_{1400K}^0 = -228.320 \, \frac{J}{\text{mol de } O_2}$$

$$\log(p0_2) = -\frac{228320}{26806} = -8,52$$

$$p0_2 = 3.04 \times 10^{-9} atm$$

Para o equilíbrio Fe/FeO

$$2Fe + O_2 = 2FeO$$

$$\Delta G_{1400K}^0 = -345.850 \frac{J}{mol\ de\ O_2}$$

$$\log(p0_2) = -\frac{345850}{26806} = -12,90$$

$$p0_2 = 1,25 \times 10^{-13} atm$$

Para o equilíbrio Mn/MnO

$$Mn + O_2 = MnO$$

$$\Delta G_{1400K}^0 = -561.050 \frac{J}{\text{mol de } O_2}$$

$$\log(pO_2) = -\frac{561050}{26806} = -20,93$$

$$p0_2 = 1.17 \times 10^{-21} atm$$

Para o equilíbrio Si/SiO₂

$$Si + O_2 = SiO_2$$

$$\Delta G_{1400K}^0 = -661.440 \frac{J}{mol \ de \ O_2}$$

$$\log(p0_2) = -\frac{661440}{26806} = -24,67$$

$$p0_2 = 2,11 \times 10^{-25} atm$$

Para a mistura gasosa pCO₂/pCO = 1

$$2CO + O_2 = 2CO_2$$

$$\Delta G_{1400K}^0 = -322.380 \, \frac{J}{\text{mol de } O_2}$$

$$\log(pO_2) = -\frac{322380}{26806} = -12,03$$

$$pO_2 = 9.41 \times 10^{-13} atm$$

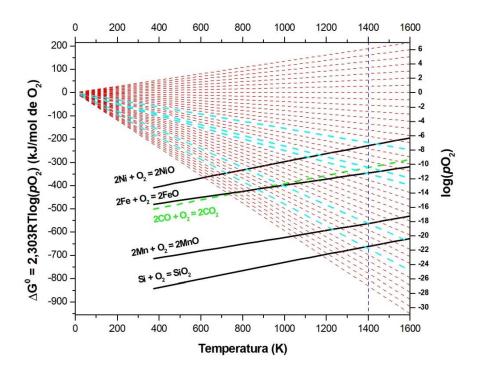


Figura 2. Diagrama de Ellingham para reações de oxidação com destaque para as isobáricas de O₂.

Os resultados mostram que o valor de pO_2 no equilíbrio para os óxidos de manganês, ferro e silício são menores que o valor de pO_2 gerado pela mistura gasosa e, por isso, essa mistura não consegue deslocar o equilíbrio das reações de formação desses óxidos metálicos no sentido de formação da espécie metálica. Por outro lado, a pressão de O_2 exercida por essa mesma mistura gasosa é pequena o suficiente para deslocar o equilíbrio da reação de formação do óxido de níquel no sentido de formação de níquel metálico e, por isso, essa será uma mistura gasosa redutora para esse óxido.

Diagrama de Ellingham para as reações de redução com monóxido de carbono

O diagrama de Ellingham pode ser utilizado para representar as reações de redução com monóxido de carbono como mostra a Figura 3 para as reações abaixo:

$$\frac{1}{2}SiO_2 + CO = \frac{1}{2}Si + CO_2 \tag{7}$$

$$MnO + CO = Mn + CO_2 \tag{8}$$

$$FeO + CO = Fe + CO_2 \tag{9}$$

$$NiO + CO = Ni + CO_2 \tag{10}$$

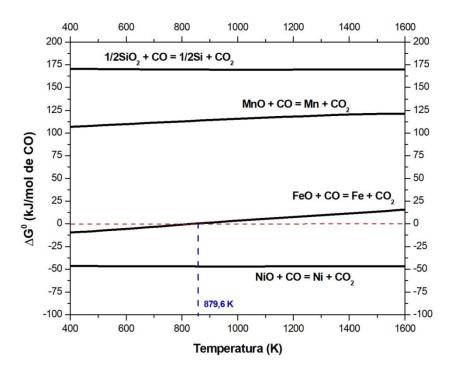


Figura 3. Diagrama de Ellingham para as reações de redução com monóxido de carbono.

O diagrama mostra que a reação de redução dos óxidos de manganês e de silício por uma mistura gasosa com razão $pCO_2/pCO=1$ não é termodinamicamente favorável ($\Delta G^0>0$) em toda a faixa de temperatura mostrada no diagrama e, por outro lado, a redução do óxido de níquel pela mesma mistura gasosa é sempre termodinamicamente favorável ($\Delta G^0<0$). Para o óxido de ferro a redução é termodinamicamente favorável para temperaturas menores que 879,6 K e não é favorável para temperaturas maiores que 879,6 K. Os valores de ΔG^0 mostrados na Figura 3 consistem na soma da metade do valor de ΔG^0 para a reação (1) com o inverso das reações de formação de óxido representadas na Figura 2 e, sendo assim, é importante que o estudante observe que os dois diagramas estão relacionados.