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Cooperation has been studied in the context of game evolutionary theory by assuming that
individuals play always the same game. Here we consider a mixture of two games G; and

G>. In each interaction of two individuals, they can play the games G, or G, with probabil-
ities w and 1 — w, respectively. We define the evolutionary model and study the coopera-
tion evolution in a well-mixed population and in a cycle. We show that in the well-mixed
population the evolution is equivalent to the evolution given by the average game. In a
cycle, we show that the intensity of selection plays an important role in the promotion
or inhibition of cooperation, depending on the games that are mixed.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Cooperation is a widespread phenomena in nature [1,2].
Since cooperation involves a benefit to someone and a cost
payed by the cooperator, it is hard to explain its establish-
ment by Darwin natural selection. Partial answers can be
found within the framework of evolutionary games [3-5].
Usually individuals are players that can choose one of
two strategies [5]: cooperation (C) or defection (D). The
strategy is adopted during a game round and can be chan-
ged in the next round by taking into account the earned
payoffs. If the players are set on the vertices of a network,
they are constrained to play against their next neighbours
with the same strategy or with different strategies [6-10].

In the simplified framework of a two-person game,
where only two strategies are available, the outcome of
one round of a cooperation game can be represented [11]
by the payoff matrix
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If T>1 and S <0, the game is called prisoner’s dilemma
(PD). Defection is the best response for both players de-
spite of mutual cooperation being better, what gives rise
to a social dilemma where the individual interest is in con-
flict with the social outcome [12]. When T > 1 and S > 0,
the game is called snow-drift game (SD) and the best re-
sponse is to adopt the opposite strategy of the opponent.
If T<1 and S <0, the game is called stag-hunt (SH) and
the best response is to adopt the same strategy of the
opponent. Note that in the SH game mutual cooperation
is the most efficient solution (Pareto efficient) [12]. When
T <1 and S > 0, the game is called harmony-game (HG)
and mutual cooperation is the best option. The payoff ma-
trix can be represented in a short form by the vector
G = (T,S). The parameter space T x S is shown in the Fig. 1.

Until now much effort has being done to study the case
where the same game is played in all interactions [5,13-
18]: usually it is always only the prisoner dilemma game,
only the snow-drift game, or only the stag-hunt game.
But this might not be always the case, as it was already
pointed out in some models where the payoff itself was
subject to evolution [19-21,24]. The main result in these
papers is that, if the payoff is subjected to selection, the
population can escape from the dilemma posed by the
PD game. Moreover it was shown that Darwinian selection
prefers SH to PD game. Here we study a model where in
each pairwise interaction two different games can be
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Fig. 1. Payoff parameter space T xS. The harmony game (HG) is
represented by the parameters in therange T < 1 and S > 0, the prisoner’s
dilemma (PD) in the range T > 1 and S < 0, the snow-drift (SD) in the
range T > 1 and S > 0, and the stag-hunt (SH) in the range T <1 and
S<o.

played in a random fashion, with no selection pressure on
the payoffs. The evolution of cooperation in such popula-
tions when there is a mixture of different games is more
complex than when only a single game is played. Let us ap-
proach this new problem in the following way. In the next
section we define the evolutionary model. In section IIl we
analyze it in a well-mixed population. We discuss the case
of a population structured in a ring (cycle) in section IV. Fi-
nally, we present our conclusions in the last section.

2. The model

The evolution is based on two compact processes: the
interaction and the imitation process. The population
structure defines who interacts with whom. In a well-
mixed population each player interacts with a random
sample of the population, while in a structured population
the players are set on the nodes of a network interacting
with their nearest neighbours. We are going to study the
mixture of two games, G; = (T1,S;1) and G, = (T3, S,), just
to keep it simple. In each interaction, one round of the
game G, (G,) is played with probability w (1 — w), indepen-
dently of other rounds. The payoff obtained from each
interaction is added to the cumulative payoff of each
player.

In the imitation process a player x is randomly chosen
to update its strategy. In a well mixed (structured) popula-
tion the player x randomly selects another player y in the
entire population (in the nearest neighbourhood) to com-
pare the cumulative payoffs. Suppose that the cumulative
payoffs of the players are I, and IT,. With probability

1

Fy =T = m,

the player x imitates the strategy the player y is using.
After the imitation process the payoffs of all of the players
are set to zero and the interaction process is started again.

3. Well-mixed population

In an infinite well-mixed population the cooperators
have an average payoff given by

I =X+ (1 - X)[WS; + (1 —w)Sy)],

where x is the fraction of cooperators in the population.
The defectors have an average payoff given by

Iy = xwT; + (1 —w)Ty].

So if two different games are played in a well-mixed pop-
ulation, the population dynamics is driven by the average
game,

G = WG, + (1 - w)G,. 2)

The mean field equation obtained from the microscopic
rules [5] is given by

%= x(1 = )[F(II, — Ty) — F(T1y — 1)) 3)

Although the equilibrium points of the mean field equation
are defined by the average game, it is interesting to decou-
ple the dynamics of the two different games. An equilib-
rium point will be stable or unstable depending on which
game has a stronger effect on the dynamics in the region
under analysis. In the Fig. 2 it is shown an illustration of
the mixture of a SH game and a SD game. Note in the
Fig. 2 that if the cooperation fraction is small, the SH game
dynamics is stronger and cooperation goes extinct. On the
other hand, if the cooperation fraction is close to one, the
SD game is stronger and cooperation decreases. The overall
effect is that the dynamics of the mixing is equivalent to
the PD game dynamics.

In a finite population of size N, a typical quantity of
interest is the probability that a single cooperator takes
over a population with N — 1 defectors. This probability is
known as fixation probability [4]. The fixation probability
of a cooperator in a game G = (T,S) is given by
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To calculate the fixation probability when the games
Gy = (T1,S1) and G; = (T,,S;) are mixed, the average
payoff of each player is given by the average
game (T,S) =w(T1,51) + (1 —w)(T,,S;). So the fixation
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Fig. 2. Dynamics of the fraction x of cooperators for the snow-drift game
G, = (T1,S1) = (2,0.5), for the stag-hunt game G, = (T»,S;) = (0.5, -1),
and for the mixture G = wG; + (1 — w)G, with w = 0.5. The average game
is a PD game. The stag-hunt game has an effect on the reproduction rate
that is stronger than the snow-drift effect when x<1/3 and the
cooperation fraction decreases. Both game have the same effect when
1/3 <x<2/3 and the cooperation fraction decreases. The snow-drift
game has an effect on the reproduction rate that is stronger that the stag-
hunt effect when x > 2/3 and the cooperation fraction decreases too. The
overall result is that cooperation always decreases.
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Fig. 3. Fixation probability in the parameter space T x S for a single game
(T,S) and N = 100. The fixation probability for the mixture of two games
G; and G, is equivalent to fixation probability of the average game, which
is along the line wG; + (1 — w)G, (white continuous line).

probability for the mixture of G; and G, is given by the cor-
responding point on the line w(T1,51) + (1 — w)(T2,S>), as
it is shown in the Fig. 3.

The mixture of games in well-mixed populations can be
easily generalized to more than two games, because the
overall result can be well approximated by the average
game. So if the games G, G,, ..., G, are mixed in a popula-
tion at probabilities wq,ws,...,w,, with > w; =1, the
overall result is analogous to the average game represented
by the linear combination w;G; +W,Gy + ... +w,Gp. It is
worth noting that in other evolutionary game models the
dynamics can be described in an equivalent way by an
average payoff matrix as, for example, in the replicator
dynamics on graphs in the limit of weak selection [23]
and in the evolution of selfishness and other-regarding
preferences in lattices [22].

4. Cycle

The cycle is a one-dimensional population structure
with periodic boundary conditions. If a single cooperator
invades a population of defectors in a cycle, the
cooperators grow in a compact cluster, because the
strategies that are changed are only those on the two bor-
ders of the cooperation cluster. So if n, is the number of
cooperators in the population, the size of the cooperation
cluster is also n.. The evolution of cooperation on the cycle
when there is a single compact cluster of cooperators is de-
scribed by a Markov chain with states S ={0,1,2,...,N},
where the states represent the size of the cooperation
cluster.

Let us first consider the dynamics of a single game, with
payoffs given by (T,S). If n.=1,2<n.<N-2, or
n.=N-1, the cooperators are better off only if
25>T,1+S>T,or2T > 1+ S, respectively, as it is shown
in the Fig. 4. For instance, if § — co a mutant cooperator
can invade only if 2S5 > T.

In the mixture of the games G; = (T1,S5;) and
G, = (T3, S,), the rate of the transition k — k + 1 is given by

LIW2F (A1) + (1 —w)*F(As)
+w(1 —w)(F(A3) +F(A2))] k=1
Wy =< LIWF(As) + (1 — w)F(Ag)] 1<k<N-1
NW2F(A7) + (1 = w)*F(Aro)
+w(1 — w)(F(Ag) + F(Ag))] k=N-1
and the rate of the transition k — k — 1 is given by
LIW2F(=A1) + (1 = w)’F(—Aq)
+w(1 —w)(F(=As) + F(-Ay))] k=1
LIWF(=As) + (1 — W)F(~Ag)] 1<k<N-1
LIW2F(=A7) + (1 — w)*F(—Aqo)
+W(1 —w)(F(—Ag) + F(—Ag))] k=N-1

3
Il

The arguments of the function F(-) are shown in the
Table 1.

In the limit of large N, the cooperation fraction is given
by x = . The evolution of the cooperation fraction in the
open interval (§,%) can be approximated by the mean
field equation

X=x(1-x)(W"(x) - W (x)), (4)

where W*(x) and W~ (x) have the same constant values of
Wy and W, when 1 < k < N — 1. Note that the Eq. 4 does
not hold when the network has a single cooperator or a
single defector. Nevertheless it describes well the dynam-
ics whenever the cooperator cluster has no more than
N — 1 and no less than one cooperator. The sign of the func-
tion W(x) = W*(x) — W™ (x) determines the dynamics of
the equation. If W(x) >0 cooperation increases and if
W(x) < 0 it decreases.

The sign of W(x) for the parametrized mixture of the
games G; = (T,1) and G, = (T,—1) is shown in the Fig. 5.
Note that with this parametrization, we are looking at
two classes of mixture: (i) the harmony game mixed with
the SH game and (ii) the SD game mixed with the PD game.
If 1 < T < 2, the SD and the PD games are mixed. If w < 0.5
the PD game is played more often and cooperation de-
creases for all g values. If w > 0.5 cooperation increases
depending on the T value. The remarkable result is that
although increasing T is detrimental for cooperation, the
detrimental effect of T is reduced as B gets larger. This re-
sult is due to three factors. First, if w > 0.5 the SD game
is played most of the time. Second, cooperation is the most
successful strategy in the SD game given by G; = (T, 1).
Third, as p gets larger only the most successful strategies
are imitated. So, as cooperation is the most successful
strategy in the SD game, the higher the selection intensity
the more favoured cooperation is. If 0 < T < 1 the harmony
and the SH games are mixed. If w > 0.5 the harmony game
is played more often and cooperation increases for all p
values. On the other hand, if w < 0.5 and 0 < T < 1, the
SH game is played more often. Again the temptation T is
detrimental for cooperation. But now, in the mixture of
G; = (T,1) and G, = (T, —1), increasing the selection inten-
sity has an opposite effect: the detrimental effect of T is in-
creased as the p gets larger. This happens because, if
w < 0.5, the SH game is played more often and coopera-
tions is disfavoured in the SH game. These results are along
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n. =1

Fig. 4. Schematic representation of the three classes of payoff values on the cycle: n. =1 (left), 2 <n. <N -2 (centre) and n. = N —

I<n.<N-1
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n.=N-1

1 (right). The

cooperators are in blue and the defectors in red. The (T,S) region where the payoff of a cooperator is larger than the payoff of a defector at the interface
between the cooperation and the defection cluster is shown for each class. (For interpretation of the references to colour in this figure caption, the reader is

referred to the web version of this article.)

Table 1
Values of arguments of the function F(-) for the transition probabilities W,
and W,

Ay =25 —T,
A3=51+5-T,
As=1+5-T
A7 =145 —2T;
A=1+S-T1-T,

A =51+5-T

Ay =25, T,
Ae=1+S5—-T,
As=1+S -T1-T,
Ao =1+5; - 2T,

the lines of previous studies showing that the selection
intensity g has a significant effect on the evolution of coop-
eration when a single PD game is played on networks [25]
and even when the g itself is subjected to selection [24].
In the limit of small B, also known as weak selection
limit, the probability of imitation can be approximated
by a linear function depending on the payoff differences.
The term W*(x) — W~ (x) is then approximately given by
the difference of the average payoffs of a cooperator and
of a defector. The terms can be rewritten in such a way that
the average payoff of each strategy is equivalent to the

average payoff calculated considering the average game
G = wGq + (1 — w)G,. In the average game G = (T, S), coop-
eration is favoured as long as T > 1 + S, as it is shown in
the Fig. 4. So in the weak selection limit the dynamics is
the same as the dynamics of the average game, as it is
shown in the Fig. 5 for g = 0.1.

In a finite population the evolutionary process has two
absorbing states: full cooperation (state N) and full defec-
tion (state 0). The fixation probability of a single coopera-
tor for the parametrized mixture of the games G; = (T, 1)
and G, = (T, —1) can be calculated taken into account the
three cases described in the Fig. 4. The analytical result is
shown in the Fig. 6. First note that increasing p has a posi-
tive effect on the cooperation fixation if w > 0.5, though in
the parameter region given by 1 < T < 2 the fixation prob-
ability decreases for large B. Nevertheless for large f the
population spends most of the time in the cooperative
states before reaching the defective absorbing state. This
statement can be quantified by looking at the average
number of visits to each state before reaching fixation,
which can be calculated using the fundamental matrix of

-

1
T

Fig. 5. Signal of the function W(x) in the intervals for the parametrized mixture of the games G; = (T, 1) and G, = (T, 1) for g = 0.1 (left), = 5.0 (centre),
and = 20 (right). For each w and T, the sign of W(x) is plotted accordingly to W(x) > 0 (white) and W(x) < 0 (black).
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Fig. 6. Fixation probability of a single cooperator for the parametrized mixture of the games G, = (T, 1) and G, = (T, 1) for g = 0.1 (left), 8 = 5.0 (centre),

and B = 100.0 (right). Here N = 100.
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Fig. 7. Number of visits to the transient states for the mixture of G; = (1.2,1) and G, = (1.2, —1) with w = 0.48 (left) and w = 0.52 (right). Here N = 100.

the Markov process [26]. The average number of visits to
the transient states j when the system starts at the state
1 is shown in the Fig. 7 for the mixture of G; = (1.2,1)
and G, =(1.2,-1). Note that if w > 0.5, the population
spends more time in the cooperative states as f§ gets larger
even though it will eventually fixate at the state 0. The ba-
sic mechanism behind is that there is a barrier at the state
N — 1. In the state N — 1 the defector out-performs the two
cooperating neighbours and, even though cooperation is
better than defection in the other states, the barrier at
the state N — 1 becomes more repellent at large j.

So far we have analyzed the parametrization given by
G; = (T,1) and G, = (T, —1). The formalism developed here
is not restricted to this parametrization. Another interest-
ing parametrization is the mixture of the SH and the PD
game, for example, the mixture given by the parametriza-
tion G; =(0,S) and G, =(2,S5) in the region S<O0. If
w = 1.0, only the SH game is played. In this parametriza-
tion note that cooperation is favoured in the SH game
when the population is such that 1 < n. < N — 1. Following
the same analytical approach, we can conclude that
increasing the selection strength will enlarge the parame-
ter space where cooperation thrives. In other words,
increasing the selection strength can promote cooperation
for some S values where cooperation would not thrive if
the selection was weaker. This parametrization is interest-
ing because it links our work to a previous result where it

was shown that, if the SH game is allowed in an evolution-
ary spatial heterogeneous games [20], cooperation is
enhanced.

5. Conclusion

Here we analyzed the evolution of cooperation in mixed
games using mean field technics. We showed that in a
well-mixed population the mixture of games is equivalent
to the average game, with the contribution of each game to
the dynamics depending on the cooperation fraction. In a
population where more than one game is being played, it
might be the case where one game is shaping the imitation
process stronger than the others if cooperation is rare, but
looses its impact if cooperation is abundant. So the abun-
dance of cooperators is a good indicator of what class of
reasoning should be worked out in order to promote coop-
eration. In the ring topology we showed that, for some
mixtures, increasing the selection intensity enlarges the
parameter space where cooperation can thrive, while, for
other mixtures, it reduces the parameter space. Even
though the human social networks are far from being rep-
resented by cycles, the analysis of cooperation on the cycle
made here is simple, completely analytical and points to
the relevant role of networks when more than one game
is played.
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