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Abstract – The emergence of cooperation has been widely studied in the context of game theory
on structured populations. Usually the individuals adopt one strategy against all their neighbors.
The structure can provide reproductive success for the cooperative strategy, at least for low
values of defection tendency. Other mechanisms, such as punishment, can also be responsible for
cooperation emergence. But what happens if the players adopt simultaneously different strategies
against each one of their opponents, not just a single one? Here we study this question in the
prisoner dilemma scenario structured on a square lattice and on a ring. We show that if an update
rule is defined in which the players replace the strategy that furnishes the smallest payoff, a
punishment response mechanism against defectors without imputing cost to the punishers appears,
cooperation dominates and, even if the tendency of defection is huge, cooperation still remains
alive.

Copyright c© EPLA, 2009

In biological systems cooperation is an emergent
feature [1], which can be analyzed in the framework
of evolutionary games on graph theory. It analyzes the
evolution of strategies adopted by individuals in biolog-
ical, social or other contexts, in which the interactions
are given by the links of a graph [2]. The question that
has been set is why cooperation can be established if it
is costly for the cooperators [3]. Direct reciprocity [4],
indirect reciprocity [5], spatial structure [6], in which
individuals have their interaction constrained by some
network of interactions, and other mechanisms have been
proposed to answer this question. The spatial structure
effect has been widely studied and was proved to be
efficient to establish cooperation [1, 7–14]. Another mech-
anism is altruistic punishment where, besides the defector
and cooperator, there is the altruistic punisher who acts
like a cooperator but also pays for punishing defectors.
Along with altruistic punishment, other mechanisms have
been proposed such as the introduction of volunteering
participation in public good games [15] and selection
among groups [16].

(a)E-mail: wardil@fisica.ufmg.br
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The cooperation problem is usually mapped into a game
theory framework in which the individuals are players.
Usually the player can choose one of the two strategies
(cooperation (C) or defection (D)) and use this strategy
during a game round. A strategy update can be set,
and for the next round, the players can change their
strategy taking into account the payoff earned during the
round. If the players are set on the vertices of a network,
they are constrained to play against their next neighbors.
Note that, if some strategy is chosen, the same must
be used against all of the opponents during the same
round. Recently, social diversity has been introduced [17]
in the context of cooperation in public good games. The
promotion of cooperation was analyzed by setting each
individual to play different games in each neighborhood.
This opens the question of what could happen if each
player could choose different strategies against different
opponents and adopt them during the same round. Let
us state this point clearly. Suppose N individuals set on
the vertices of a network. Each player can choose different
strategies against each neighbor and earn different payoffs
from each interaction. If the network is a square lattice,
player x can choose, for example, the (C,C,C,C) strategy
set, meaning that player x chooses the C strategy against
all of his opponents.
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In this letter, we study the emergence of cooperation
if the players adopt different strategies against different
opponents. We use the prisoner dilemma with population
structured on a square lattice and on a ring as the scenario
for the cooperation problem. The players use different
strategies against different neighbors and use the imita-
tion rule with synchronous updating [9]. In the prisoner
dilemma [18], both players receive 1 upon mutual coop-
eration, ε upon mutual defection; the defector receives b
if the other cooperates, and the cooperator receives 0 if
the other defects. The tendency to defect is given by b
(b > 1), and ε is taken to be small (ε� 1). When player x
interacts with y, we assume that x has the information on
i) y’s cumulative payoff and ii) the strategy that y is using
against him. In this rule, players imitate the successful
strategies of their neighborhoods. Each player interacts
with its next neighbors and plays a round of one game
with each opponent and earns a cumulative payoff. Then
the player, let us call it x, randomly chooses a neighbor,
y, and compares both cumulative payoffs Px and Py.
If Px � Py, player x stays with its own strategy, but if
Px <Py, then player x adopts the opponent’s strategy
with probability (Py −Px)/4b [9]. So if player x decides to
copy the strategy that y is using against him, according to
the rules stated above, he must also decide against which
of his neighbors he will change his strategy by the new one.
We have defined three different replacement rules that
give rise to three different update rules. Let us call them
just models A, B, and C. We are going to focus on model A
and use the others to highlight the features of the former.
In model A, player x chooses for the replacement the

interaction that gives him the smaller contribution for
his cumulative payoff. The possible confrontations are
(D,C),(C,C),(D,D), and (C,D), where the first entry is x’s
strategy and the second is the opponent’s strategy. Each
one of these possibilities contributes to the cumulative
payoff with b, 1, ε, and 0, respectively. If player x is being
exploited, he can neutralize the exploiter by changing
(C,D) to (D,D) but keep other possible cooperation.
It must be noted that if ε= 0, both (D,D) and (C,D)
contribute with the same amount, so the player randomly
chooses one of them. In the usual game, where each player
adopts the same strategy against all of his opponents,
although the imitation also decreases the exploiter payoff,
it cannot be thought of as a punishment act because the
imitator is actually trying to improve his own benefits
by probably exploiting other cooperators. But in model
A, when (C,D) is changed to (D,D), just the exploiter is
being punished, the other cooperation are not changed.
So model A incorporates into the replacement rule both
imitation and punishment without costly mechanisms. It
must be mentioned that we are not using punishment as
another strategy, like altruistic punishment [16]. There are
only two basic strategies: cooperation and defection.
In the second replacement rule, model B, player x

changes exactly the strategy he uses against the player
he chose to imitate. This model is trivial but interesting,
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Fig. 1: Fraction of cooperation in the square lattice at the
steady state for different values of b. It is shown the behavior
of the usual game and the studied models A, B, and C.

because since two players reach mutual cooperation they
remain forever and since an exploiter is punished there
is no chance of other exploitation and they will stay
forever with mutual defection. In the third replacement
rule, model C, the tendency to punish exploiters is
smoothed because player x randomly chooses one of his
confrontations and changes the strategy used in that
confrontation.
We made the simulations on the square lattice with

linear size L= 100 and checked that the same results
are still valid for L= 200. First, we measured the mean
fraction of cooperation (fc) at a stationary state for
different values of the tendency for defection b. The
number of cooperation (nc) is taken to be the quantity
of C strategies used in all confrontations, so 0� nc �
4N and fc = nc/(4N). The random initial configuration
is characterized by 50% of cooperation. For each initial
condition, we discarded the transient time needed to reach
the stationary state, and then we made a time average
for 1000 MCS (Monte Carlo Steps). A second average
is realized over 100 different initial conditions. We used
1� b� 5 and ε= 0.01. Figure 1 shows the results for
the three models and for the usual game. Note that for
model C and the usual game, defection is the dominating
strategy when b > bc. Note also that models A and B keep
cooperation alive for every b. It must be mentioned that
it is possible to have some residues of defection in the case
of cooperation domination or some residues of cooperation
in the case of defection domination. This is due to the fact
that the update rule prevents a change if the payoffs are
the same. This prevention enables the existence of some
stable residual configurations. For model A, the fraction
of cooperation for b= 2 is around fc = 0.9998. For model
C, the residues of cooperation is around fc = 0.005 at the
region b > bc.
Let us now analyze model A in more detail.

In the usual game, extensive analysis has been done
and the emergence of cooperators is attributed in part
to the negative effect on the cumulative payoff when
an exploited individual copies a D strategy used by a
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Fig. 2: Fraction of interaction of type D-D and fraction of
cooperation at short times for model A in the square lattice.
The defect tendency is b= 1.1. Each MCS (Monte Carlo Step)
corresponds to a round in which every player play a game with
all their neighbors.
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Fig. 3: Cluster of cooperation of size S = 3 and the region of
stability shown inside the dashed square.

successful exploiter, decreasing the exploiter payoff [6,19].
This also happens in model A, as can be seen in fig. 2, that
depicts the typical behavior for short times. Note that
when the quantity of (D,D) is a maximum, the fraction
of cooperation is a minimum and starts to increase.
Another reason in the usual game for the maintenance

of cooperation is the formation of cooperation clusters.
This is again present in model A. Suppose we have a
cluster as shown in fig. 3, where all the players adopt
defection in all confrontations except for a cluster of
cooperation. One can see that for b > 1, the region inside
the dashed square is stable in the sense that it will never
be invaded by a defection. Suppose some player on the
interface chooses to change his (C,D) confrontation. Since
this confrontation furnishes the worst contribution, it is
only that confrontation that can be changed to (D,D).
After that, (D,D) is also the worst confrontation, and the
D strategy cannot be copied to the interior of the square. If
b� 3, the cooperation in such configuration cannot spread
out, because the exploitation of the immediately outside
players give to each of them a total payoff of b > 3, and
players immediately inside have a payoff value of only
3. But, if 1< b< 3, the cooperation cluster can expand.
Moreover, a similar analysis applied to configurations like

C C
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C C

Fig. 4: Mutual cooperation configurations in model A prevent
invasion by defections. Note that no matter the boundary nor
the region width, there is always a stable region inside the
dashed line.

the one depicted in fig. 4 shows that there is always a stable
region of cooperation, irrespectively of the boundary and
the width of the region of cooperation. For simplicity, let
us put ε= 0 in cluster analysis and evaluate numerically
the probability that a square cluster of linear size S can
take over a bigger square region of twice the original
linear size. For 4� S � 10, with probability one the cluster
expands. So the two mechanisms of cluster of cooperation
formation and the negative effect of the exploiter being
imitated are present. But the great difference of model A
is the possibility of neutralizing a defector and keeping
the old cooperation. The importance of this fact can be
better illustrated in a more general case. Suppose a big
exploiter is introduced interacting with all individuals of
a population of cooperators. After a few rounds, some
players adopt D strategy against the big exploiter and
still keep the cooperation with the other players. The
exploitation will be almost completely neutralized. No
matter how great is the exploitation, model A always
prevents the invasion of defectors.
If b > 3, the strategies on the boundary of the stable

region fluctuate. Using a rate equation approach, we
obtain an analytical expression for the fraction of coop-
eration ρ inside a square of size S:

ρ= 1− 1
S
+
−b+√b2+8(b− 2)+ (S− 2)

(b− 2)S2 . (1)

Figure 5 shows that the simulation and the analytical
expression for S = 6 agree very well.
Let us analyze the other models. Model B is a trivial

one, because since a player has updated one of his
confrontation, this confrontation remains the same
forever. Since in the random initial condition we have, in
average, 50% of cooperation, there is at the beginning, in
average, 25% of each one of the four possible confronta-
tions. So there is an inferior bound for the fraction of
cooperators, namely 25%. Since all confrontations are
initially equally probable, every player that has more than
one (D,C) confrontation will have a bigger cumulative
payoff. The players that are exploited by these exploiters
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Fig. 5: Fraction of cooperation inside a square of linear size
S = 6 when b > 3 for model A. The continuous line represents
the analytical expression and the circles the simulations data.

will replace the (C,D)confrontation by a (D,D) one. All
these (C,D) confrontations will change to (D,D) ones
while this unbalanced exploitations are not neutralized.
So the cooperations that remain will be only those that
were initially present in (C,C) confrontations, that is, the
fraction will be around 25% as is shown in fig. 1. Note
that after the exploitations are neutralized, they cannot
be converted to mutual cooperation. This feature is in
contrast with model A, because if a (D,D) confrontation
appears in model A, it can be changed to a (C,C) one
when both players x and y imitate other players that are
cooperating with them, in the same round.
Model C does not support the same capability of

survival for the cooperators, as can be seen in fig. 1.
The mechanism of defection neutralization is smoothed,
because if there is a (C,D) confrontation, the D strategy
can be copied into any confrontation and the exploitation
has a probability to remain alive. Let us analyze again the
cluster shown in fig. 3. This cluster is no longer stable. If
b < 2, the cluster will expand. But there is no guarantee of
stability. Suppose some player is reached by the expanding
cooperation cluster and changes all of his strategies to
C but one is still kept with D. Suppose also that this
player is surrounded by cooperation. The cluster can go on
expanding, but now this D strategy can start a defection
invasion from inside the cluster because it will give to that
player a bigger payoff. This does not happen in model A.
The random replacement does not provide the certainty of
neutralizing an exploitation and still keeping cooperation
with the others that are cooperating.
Further simulations show that if b� 1 the fraction of

cooperation at steady state in model A tends to the same
value as that in model B. But this is expected, because if b
is huge, every (C,D) confrontation will give the exploiter a
huge advantage and every (C,D) confrontation will change
to a (D,D) one.
It must be mentioned that the steady-state fraction

of cooperation depends on the initial configuration. The
parameter we used to vary the initial conditions is the
probability p of having a cooperation. For model A,
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Fig. 6: Fraction of cooperation in the square lattice for model A
at the steady state with different probabilities of misjudgments.
The results using b= 1, b= 2, and b= 4 are shown.

as the cooperation survival depends on cluster formation,
if p is small, there is no cluster of cooperation at the begin-
ning, but if p > 0.4 and 1< b< 3, the stationary value
does not depend on the initial condition. When b > 3,
cooperation clusters no longer spread out and the station-
ary values strongly depends on the initial configuration
of cooperation reinforcements. After discarding finite-size
effects, model C does not depend on initial conditions.
Let us now consider another interesting point: the

robustness of model A. So far we have assumed that the
players identify correctly their worst confrontation. But
misjudgment is a relevant parameter in real behavior.
Instead of always choosing the worst confrontation, now
the players can misjudge and choose a confrontation that
does not give the worst contribution to the payoff. For
this we introduce a misjudgment probability (pm). Let us
state this point clearly. The individuals can update their
strategies in every round. For each individual update we
introduce the possibility of a random replacement, given
by a misjudgment probability pm. By this definition,
with probability 1− pm, the replacement follows the
original model A, and, with probability pm, it follows
model C. If pm = 0 and pm = 1, model A and model
C are recovered, respectively. We say that model A is
robust if the fraction of cooperation in the case pm �= 0
still remains close to the fraction in the case pm = 0, if
we vary the pm values. We say that for some b value
model A is more robust than for another b value, if the
decreasing of the cooperation fraction is lower for the
first b value. The robustness analysis shows that there
are three typical behaviors that depend on the defector
tendency. This defines three b regions: i) 1� b < bc,
ii) bc � b < 3, and iii) b > 3. In the first region both models
A and C exhibit cooperation. In the second and third
region, just model A exhibits cooperation. Note that
the fraction of cooperation in the third region is lower
than that in the second. We choose b= 1, b= 2, and
b= 4 as representative values for the three regions. The
simulational results are shown in fig. 6. For b= 1, model
A is indeed robust: up to pm = 0.1 there is no decrease
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Fig. 7: Fraction of cooperation in the ring. The behavior at the
steady state of the usual game and the studied models A and
C for different values of b are shown.

on the cooperation fraction. This means that if N = 104,
even in the presence of 1000 misjudgments in every round,
nothing happens to the cooperations. For b= 2, model A
does not change the fraction of cooperation for pm values
up to pm = 0.001. For b= 4, the fraction of cooperation
reduces even for pm = 0.0001. Note that for b > bc in model
C the inherent randomness on the replacement reduces
the cooperation drastically. This b-dependency is also
present when some misjudgment introduces randomness
in the replacements of model A. So the results support
the conclusion that, for low defector tendency, model A is
robust, although for large values of b the randomness has
a more eminent role in reducing the cooperation fraction.
In order to have a more complete picture of the

models with the possibilities of different strategies against
different opponents, let us study the one-dimensional
lattice with periodic boundary conditions (ring). The ring
has N = 104 nodes and each node is linked only to their
two next neighbors. We also use ε= 0.01. The fraction of
cooperation is shown in fig. 7. Note that for the usual
game there is no cooperation and model A is again able to
sustain some cooperation. Note that model C is also able
to keep some cooperations alive even for huge defector
tendency, which does not happen in the square lattice.
The influence of connectivity on the cooperation frac-
tion was already noted for the regular network with the
usual game [9]. The robustness analysis shows the same
b-dependency, although the ring is less robust than the
square lattice. Figure 8 shows the robustness simulational
results for the ring.
In summary, we have introduced the adoption of multi-

ple strategies by the same player which gives the players
the possibility of cooperating with some opponents and
of defecting with others. If the player wants to punish the
exploiter but keeps the old cooperations, he can use simul-
taneous multiple strategies with the “replacing the worst
confrontation” replacement rule that model A provides.
Model A incorporates a true punishment, because the
players do not take advantage in imitating the defector
strategy, but just decrease the payoff of who wants to be an
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Fig. 8: Fraction of cooperation in the ring for model A at the
steady state with different probabilities of misjudgments. The
results using b= 1, b= 2, and b= 4 are shown.

exploiter. Model A also incorporates the re-establishment
of mutual cooperation by not keeping a frozen interac-
tion. The usual game on the square lattice, with the same
synchronous update rule, provides a smaller fraction of
cooperations for low b values and has a transition at a
low b value when the cooperators die out. We have shown
that model A provides a mechanism in which cooperation
dominates if 1< b< 3. Moreover, even for huge defection
tendency (b > 3) model A ensures cooperation survival.
For the ring topology model A also exhibited capability of
sustaining cooperation. Finally, we showed that model A
is robust against misjudgments, at least for low defector
tendency, for both lattices. We stress that this simple rule
can be easily set in other game contexts, which opens the
possibility of further researches.
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