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Abstract
Cooperation has been widely studied in the context of evolutionary games
on graphs. Usually the players are set on the nodes of a network and adopt
the same strategy, cooperation or defection, against all of their neighbors. In
heterogeneous networks, it was shown that cooperation is highly sustained,
although when the cumulative payoff is normalized by the connectivity,
the cooperation is severely weakened. Here, we study the evolution of
cooperation in heterogeneous networks when it is possible to adopt different
strategies against different opponents. We study numerically different types of
heterogeneous networks, including scale-free networks, that differ in the extent
of the role of the highly connected nodes, usually called hubs. The remarkable
result is that cooperation is maintained irrespective of whether the payoff is the
total one or the normalized one, and, in spite of such blindness, we still find
that the topology has a strong effect. When the presence of the hubs is more
prominent, we find that the cooperation level decreases for synchronous update
but remains almost unchanged for the asynchronous update. It is also shown
that cooperation is robust against errors in the update rule.

PACS numbers: 89.65.−s, 87.23.−n, 02.50.Le

1. Introduction

Cooperation is a widespread behavior that is present from the simplest unicellular to the more
complex multicellular organisms [1–8]. The core of the cooperation act is to pay a cost to
bestow a benefit on another individual. Evolutionary theory came up to explain the ultimate
causes of cooperative traits [9]. Why is cooperation widespread if it is so costly to their
bearers? In the case of non-human animals, kin selection gives good ultimate explanations,
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because if the cooperator helps a relative, as the cooperator and the recipient of the help
are genetically similar, it helps the transfer of the cooperative gene to the next generation
[1, 7, 10, 12, 11]. But humans also cooperate with strangers [7]. Humans have developed
remarkable mechanisms to sustain cooperation, like the reciprocity mechanism. Reciprocity
means that what an individual does depends on what others do to it directly or indirectly.
Direct reciprocity means that I choose what to do to you depending on what you do to me
[13]. Indirect reciprocity means that my behavior toward you also depends on what you do to
others [14]. One of the most simple strategies that can perform reciprocity is ‘tit for tat’ (TFT)
strategy, where the players do whatever the co-player did in the previous round. This simple
strategy was first proposed in Axelrod’s tournaments, where TFT was the greatest winner
[13, 15]. In the context of reciprocity, punishment and reward are also present in human
behavior and are good proximate explanations for cooperation [16–18]. Note that all of the
reciprocity strategies assume the ability of discriminating the co-players in such a way that
cooperative traits receive different treatments when compared to the non-cooperative traits.

Genetic inheritance is part of the mechanism of the cooperative trait evolution. But one of
the remarkable features that the humans have developed is the ability of cultural transmission
[7, 19]. Humans have developed a cognitive support that allows them to learn with others and
to imitate the successful individuals. This means that if a successful individual can be imitated,
natural selection favors the cognitive capacity that allows the imitation of the best, since those
that are able to learn perform better than those that are not able to learn [19]. Therefore
cooperation can also spread by cultural transmission, like the process of imitating the best
[19, 20]. But social learning is not the only way to learn. Individuals can also learn from their
own experience, e.g., by changing the strategy if the current one is no longer satisfying [21, 22].
One of the most successful strategies that has been studied is the ‘win-stay-lose-shift’ strategy
[21]. In this strategy, each individual has an aspiration level and changes its strategy if the
current payoff is below the aspiration level. It has also been shown that ‘win-stay-lose-shift’
strategy outperforms TFT [21].

The imitation process is a model of the reproduction of strategies. When a successful
individual is imitated, it means that somebody imitated the strategy that the successful
individual is adopting. It does not mean that the successful individuals generated offspring. It
is just a cultural transmission. In the context of cultural transmission, the social network of
interactions is an important factor to be studied [23]. From simple interaction networks, like
the square lattices [24–26], to complex interaction networks, like scale-free networks [27–29],
it was shown that cooperation is maintained in the imitation process. Scale-free networks are
claimed to be a unifying framework for the evolution of cooperation [27]. The properties of the
scale-free networks [30, 31], like the connectivity degree correlation, the clustering coefficient
or the assortative degree, have strong effect in the evolution of cooperation [32, 28, 29]. In
these networks, the initial condition has also a strong effect. If the hubs are initially defectors,
the final cooperation level is low. On the other hand, if the hubs are initially cooperators,
the final cooperation level is high [33]. It was also shown that the transition from random to
scale-free networks is followed by an increase in the cooperation level [34]. All of these results
support the assumption that the topology of the interaction network has an important effect
in the evolution of cooperation. In the great part of these models, the success is measured in
terms of the cumulative payoff. In scale-free networks, the hubs can have a huge cumulative
payoff just because they have many interactions. If the cumulative payoff is divided by the
connectivity of the node, in other words, if the effective payoff is used, the advantage of
scale-free networks is weakened [35]. It is as if the scale-free network was a regular network.
The asymmetry introduced in the cumulative payoff due to the heterogeneity has also been
addressed in a different way by limiting the number of interactions that a node can establish
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per round [36]. Although the total payoff seems to be more realistic [37], the effective payoff
might be a valid update rule in the cultural evolution scenario. A player interacting with a hub
might recognize that the huge payoff of the hub is not due to its strategy only, but due to the
large number of interactions. The effective payoff might be thought of as an increase in the
rationality of the players.

A simple model was recently introduced to study the evolution of cooperation. It takes into
account the possibility of distinguishing the opponents, the social and the individual learning,
the effects of the interaction network and an implicit punishment [38]. Instead of adopting
a single strategy against all of the opponents, each individual can adopt a different strategy
against each opponent. An individual imitates the strategy of the more successful players and
changes the strategy in the interaction that gives the worst payoff by the imitated one. When
the players are placed in a square lattice, a ring and a fully connected network, it is shown that
cooperation can be maintained even if the tendency to defect is high. For the fully connected
network, this result was also corroborated by a new mean-field approximation [39].

In this work, we analyze the effects of the total and the effective payoff in the evolution of
cooperation in heterogeneous networks within the model where it is possible to distinguish the
opponents. Here, we consider networks generated by an algorithm developed by Krapivsky
and Redner [40, 41]. By tuning a single parameter, this algorithm generates networks that vary
from random grown networks to networks where all nodes are connected to a single subset
of nodes. The nodes in this subset are called hubs. For an intermediate value of the control
parameter, the scale-free network introduced by Barabási and Albert [31] is recovered. We find
the remarkable result that cooperation is maintained irrespective of whether the payoff is the
total one or the effective one. It should be stressed that within the usual models, cooperation is
severely weakened in heterogeneous networks with the effective payoff. This work is organized
as follows. In the following section, we present our model in detail. The results are discussed
in section 3 and we summarize our results in the last section.

2. The model

We use the prisoner dilemma as the scenario for the cooperation problem and set the players
on the nodes of a network of size N. The usual models with structured populations set a
single strategy to each player, namely, cooperation (C) and defection (D). If a focal player j
interacts with k j neighbors, its strategy is just S j = C or S j = D. It adopts the same strategy
against all of the k j opponents, where k j is the connectivity degree of node j. In the model
where it is possible to distinguish the opponents, the focal player j adopts a set of strategies,
{S j,1, . . . , S j,k j }, where S j,v ∈ {C, D} is the strategy that player j adopts against the neighbor
v. So the focal player j has k j interactions. If in one of these interactions, the focal player j
plays C against an opponent who is playing D, we denote this interaction as (C, D) (the first
entry is the strategy of the focal player j and the second entry is the opponent strategy).

In a simplified version of the prisoner dilemma payoff [23], both players receive 1 upon
mutual cooperation and ε upon mutual defection; the defector receives b if the other cooperates,
and the cooperator receives 0 if the other defects. The tendency to defect is given by b (b � 1),
and ε is small (ε � 1). Each individual plays one round of the game with each of its neighbors
and earns a cumulative payoff. The total payoff is just the cumulative payoff and the effective
payoff is given by the cumulative payoff over the connectivity of the node. The total and the
effective payoff are two different ways to measure the success. We study the evolution of
cooperation in these two different scenarios. In the first one, everyone uses the total payoff and
in the second one everyone uses the effective payoff. When two players interact, we assume
that they have the information of (i) the total, or the effective, and of (ii) the strategy they
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are using against each other. In the total payoff scenario, each player randomly chooses one
neighbor and compares its total payoff with the opponent’s one. If the opponent’s total payoff
is bigger than its own one, it imitates the strategy that the opponent is using against it with
probability ptot proportional to the difference between the total payoffs, �Ptot, namely

ptot = |�Ptot|
bkmax

,

where kmax is the highest connectivity degree among the connectivities of the focal player and
of the opponent. Here b ensures the proper normalization. On the other hand, if the opponent’s
total payoff is lower than or equal to its own one, the focal player remains with the same
strategies. In the effective payoff scenario, the rule is the same except that the imitation takes
place with probability peff proportional to the difference of the effective payoffs �Peff, namely

peff = |�Peff|
b

.

If imitation takes place, in both scenarios the new strategy replaces the strategy used in one
of the interactions that gives the worst payoff. If more than one interaction gives the worst
payoff, a random one among these poor interactions is chosen. The worst pairwise payoff of
the focal player is given by the interaction (C, D), followed by (D, D), (C,C) and (D,C),
because in these interactions the focal player earns 0, ε, 1 and b, respectively. For example, this
means that if the focal player has m (C, D) interactions and a defection strategy is imitated,
a random interaction among these m (C, D) interactions is replaced by (D, D). We consider
synchronous and asynchronous updates. In the synchronous update, every player carries out
the update process simultaneously. In the asynchronous update, first an individual is randomly
chosen and carries out the update process. After this individual update, the cumulative payoffs
are updated, and other individual is randomly chosen to update its strategies. A time step,
the Monte Carlo step (MCS), in the asynchronous update consists of N of such individual
processes.

To study the influence of the population structure, we consider three types of networks: a
random grown network, the Barabasi and Albert scale-free network and a super-hub network.
These networks are generated using the Redner and Kaprivsky algorithm [40]. It is an algorithm
of growing networks. It starts with six nodes each linked to two nodes (self-connection is not
allowed), which is the appropriated initial condition [41]. At each time step, a new node x comes
up with two links. The nodes to which the new node is attached are called the antecessors of
the new node. The new node randomly chooses two nodes, namely y1 and y2. With probability
1 − r, the new node connects to y1 and, with the same probability, to y2. But with probability
r, each of the links is rewired to the antecessor of y1 and y2. The three types of heterogeneous
networks are obtained by tuning the parameter r. In random grown networks we set r = 0.0,
so the new nodes are randomly linked to the old nodes and the degree distribution has an
exponential distribution. For r = 0.5, we have the Barabasi and Albert scale-free network [28]
and the degree distribution follows a power law. There are a few nodes having lots of links
while others have a few links. In the super-hub network, we set r = 1.0 and all of the new
nodes are linked to the initial nodes. In this paper, we analyze a population of size N = 100
because of the huge time to reach the equilibrium configurations. We performed simulations
for larger networks up to N = 1000 for some parameters and the results remain qualitatively
unchanged. Note that the process of growing the network is used just to generate the network.
We do not consider co-evolution of the growing network and the evolutionary game [42].

We made simulations with initial conditions where each individual has a probability of 0.5
to cooperate in each interaction. The cooperativity in the population is measured by the average
fraction of cooperation (Fc) in the population. If nc(i, t) is the quantity of C strategies used by
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Figure 1. Fraction of cooperation as a function of b in the Usual and in the DO model for r = 0.5.
The results are shown for the total and the effective payoff with synchronous update.

the player i at time t, the cooperation fraction of player i is given by fc(i, t) = nc(i, t)/ki. Then
we discard the transient time needed to reach the stationary state and make a time average of
fc(i, t) over 1000 MCS. The average fraction of cooperation (Fc) is given by

Fc = 1

N

N∑

i=1

fc(i),

where fc(i) is the time average of fc(i, t) in the stationary state. A second average is made
over 100 different samples. We take b values in the range 1 < b � 3 and consider ε = 0.001.
We call the model where it is possible to distinguish the opponents the ‘DO model’ and the
usual model where the players adopt a single strategy the ‘Usual model’.

3. The results

First let us state a fundamental feature of the model that does not depend on the topology nor
on the synchronicity of the update. We state that any interaction of type (C,C) will never be
replaced by (D,C). Suppose that a focal player imitates a defection strategy of the opponent.
This means that the focal player has at least one (C, D) or (D, D) interaction. These interactions
furnish the payoff 0 and ε that are smaller than that of a (C,C) interaction, namely 1. It follows
that (C,C) will never be replaced. This proves the existence of a lower bound for the fraction
of cooperation given by the initial fraction of mutual cooperation. One can see that mutual
cooperation is never destroyed and every exploitation is punished when a defection is imitated.
Once the exploitations are punished, the dynamics of the synchronous and the asynchronous
update becomes different. In the synchronous update, it is possible to have a (D, D) to (C,C)

transition whenever two players make a (D, D) to (C, D) transition in their shared (D, D)

interaction. This is an essential feature of the synchronous model. This kind of transition does
not take place in the asynchronous update.

The heterogeneous networks are claimed to help the emergence of cooperation. But in
the usual models with the effective payoff, the benefits of the heterogeneity are smoothed and
the dynamics is similar to the dynamics in regular graphs [35]. The first remarkable result
of the DO model is that cooperation is maintained independently if the payoff is the total one
or the effective one. Figure 1 shows the simulation results for the Usual model and the DO
model with both the cumulative and effective payoffs for r = 0.5 and synchronous update.

5



J. Phys. A: Math. Theor. 44 (2011) 345101 L Wardil and J K L da Silva

1 1.5 2 2.5 3
b

0

0.2

0.4

0.6

0.8

1

F c

r=0.0
r=0.5
r=1.0

Figure 2. Fraction of cooperation as a function of b in the DO model for r = 0.0, r = 0.5 and
r = 1.0. The results are shown for the effective payoff with asynchronous update.

One can see that in the DO model the effective payoff actually provides higher levels of
cooperation than the total payoff for low b values, although for large b values the opposite
happens. Indeed it was shown for the DO model in a regular lattice that cooperations dominate
the population for low b values and cooperation decreases for large b values [38]. So even
though with effective payoff the network behaves like a regular network, cooperation is still
maintained in the heterogeneous networks even for large b values. The asynchronous update
has a weak dependence on the topology, as can be seen in figure 2. The cooperation fraction
cannot go far away from the initial distribution of mutual cooperation, because of the absence
of the (D, D) to (C,C) transition. The cooperation level remains at constant levels that does
not depend much on b nor on r. So let us focus on the analysis of the synchronous update in
the rest of this paper.

Another remarkable result is that in the DO model with total payoff, the fraction of
cooperation does not depend much on b, while with the effective payoff the fraction of
cooperation decreases as b increases. The reason for such b independence is related to the fact
that with total payoff the most connected nodes have a major impact in the dynamics. The
hubs have the largest payoffs and are always imitated, while they seldom imitate others. So the
equilibrium distribution depends much more on the distribution of strategies in the hubs than
on b. On the other hand, with effective payoff the hubs do not have any privilege concerning
the cumulative payoff anymore.

The main topological feature is the presence of the most connected nodes, namely the
hubs, that is controlled by the parameter r. Figure 3 shows the dependence of the fraction of
cooperation on r for b = 1.05 and b = 2.0. One can see that as r increases, the cooperation
decreases. For r close to 1, the network can be approximated by a star. The star is a network
of size N where N − 1 nodes, the non-hubs, are connected to a central node, the hub.
Figure 4 illustrates a star network. With the total payoff, the hub is always imitated but it
never imitates anybody. So if the non-hub is facing a C, this C will be imitated by the non-hub,
and if the non-hub is facing a D, this D will be imitated by the non-hub. The final outcome is
the initial distribution of cooperation of the hub, which in the present simulations is of 50%
of cooperation. With the effective payoff, the hub has no longer any prevalence and only the
initial mutual cooperation is maintained in the star. So if r is close to 1, the cooperation fraction
is lower with the effective payoff.

In order to understand the impact of r when r is not close to 1, it is worthy to look at
the dynamics. Let us first look at the dynamics of the effective payoff. In the time evolution,
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Figure 3. Fraction of cooperation as a function of r in the Usual and in the DO model for r = 0.5.
The results are shown for the total and the effective payoff with synchronous update.
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Figure 4. A star network with an initial distribution of 50% of cooperation.

initially large part of the exploitations are punished and the interactions of the type (C, D)

become (D, D), with all initial (C,C) maintained. Once this happens, the nodes with large
connectivity have a payoff around 1/4 and the nodes with low connectivity may have larger
payoffs. For instance, if a node with two interactions has one (C,C) and one (D, D), its payoff
is equal to 1/2. The next step necessary to have a cooperation boosting is the transition from
(D, D) to (C,C). In such a transition, two nodes should have the opportunity to imitate a C
strategy and replace the same (D, D) interaction. But as r increases, we expect that the large
part of the nodes are connected to the hubs. So one of the nodes needed to make the (D, D)

to (C,C) transition is likely to be a non-hub that wants to imitate a C strategy adopted by a
hub. But this imitation will not take place, because the hubs have smaller payoff at this stage.
But as r decreases toward zero, it is more likely to have a (D, D) to (C,C) transition and the
cooperation fraction increases. The argument for the total payoff is similar, except for the fact
that now the hubs have the largest payoffs. To see that this argument is indeed valid in the
case of the more complex networks studied here, we define an auxiliary measure. First let us
rank the nodes by their connectivity. The node ranked in the first position is the node with
the highest connectivity and the node ranked in the last position has the lowest connectivity.
Let Ai be the fraction of cooperation available to be imitated by the node in the rank i. The
measure Ai is given by the fraction of opponents adopting C against the node in the rank i that
has a larger payoff than the payoff of the node in the rank i. In such kind of interactions, the C
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Figure 5. Fraction of interactions with cooperative strategies available for imitation (Ai). The
rank of the nodes is represented in the horizontal axis. The rank equal to 1 represents the highest
connectivity and the rank equal to 100 represents the lowest connectivity. The defection tendency
used here is b = 2.0. The result is shown for synchronous update.

strategy is a good option to be imitated by the node in the rank i. We averaged the Ai measure
in the first 104 MCS and plotted the average of Ai for all ranks. The results for r = 0.0 and
r = 1.0 are shown in figure 5. If we look at Ai, we can see that the distinction between the
six most connected nodes and the others is weaker for r = 0.0 than for r = 1.0. Restating
the argument, we see that the probability that two nodes imitate simultaneously a C strategy
is higher as r is close to zero in the networks studied here, which makes cooperation increase
when r approaches zero. So these results corroborate the argument given above.

As stated before, the initial mutual cooperations are never destroyed. As a direct
consequence, the initial condition has a strong impact on the equilibrium fraction of
cooperation. Now instead of cooperating with 50%, let each player cooperate with its neighbors
with probability given by p0. The probability of a mutual cooperation between two players is
given by p2

0 and, as p0 increases, it is expected that the fraction of cooperation at equilibrium
also increases. Figure 6 shows the fraction of cooperation in the DO model with the total and
the effective payoff. The networks with low r have a higher fraction of cooperation. So again,
the more a network centered around the hubs the harder it is to have cooperation in the DO
model. In another analysis, it was noted for the Usual model [33] that the initial condition
adopted by the hubs has a strong impact on the final outcome. We also performed simulations
for different initial conditions adopted by the hubs. Note that in the algorithm used to generate
the networks studied here, there is a set of six initial nodes that attract most of the links when
r becomes close to 1. Keeping the other nodes with initial probability of cooperation equal
to 0.5, we set three different initial conditions for the six initial nodes: (i) AllC, cooperation
in all of the interactions; (ii) HalfC, cooperation with probability 0.5 in each interaction; (iii)
AllD, defection in all of the interactions. For r = 0.5 and r = 1.0, the equilibrium fraction
of cooperation with the total and the effective payoff for b = 2.0 is shown in table 1. Note
that if the hubs are initially more cooperative, the final outcome is also more cooperative. The
opposite happens if the hubs are initially more defective. Although the cooperation decreases
if r increases, for the same r, if the hubs are more cooperative, the cooperation is higher.
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Figure 6. Fraction of cooperation at the equilibrium for different initial conditions (p0) in the DO
model for b = 2.0 and synchronous update.

Table 1. Fraction of cooperation for different initial conditions adopted by the six initial nodes
used to grow the network. The initial conditions are (i) AllC, where thy adopt cooperation in all of
the interactions, (ii) HalfC, where they adopt cooperation with probability 0.5 and (iii) AllD, where
they adopt defection in all of the interactions. The values for the total and the effective payoff for
b = 2.0 and synchronous update are shown.

Total payoff Effetive payoff
r = 0.5 r = 1.0 r = 0.5 r = 1.0

AllC 0.77 0.76 AllC 0.77 0.76
HalfC 0.76 0.51 HalfC 0.66 0.32
AllD 0.26 0.00 AllD 0.59 0.00

In the DO model it is assumed that the players are able to distinguish the opponents
and to keep track of what strategies are being played with each opponent. As in the case of
reputation effects, if the reciprocator fails to recognize the defectors, cooperation no more
thrives [43]. What happens to the cooperation fraction at the equilibrium if there is some
probability of misjudgment of the worst interaction in the DO model? Let us suppose that
with probability w, the focal player replaces a random strategy instead of the strategy in the
interaction that gives the worst payoff. If w = 0, the original DO model is recovered and
if w = 1 the replacement is completely random. We consider w ∈ {0, 0.001, 0.01, 0.1} and
again the fraction of cooperation in the equilibrium is measured. The results for b = 1.05 and
for b = 3.0 in the DO model with effective payoff are shown in figures 7 and 8, respectively.
Note that for b = 1.05 cooperation is robust against misjudgment, while for b = 3.0 it is not.
With the total payoff, the results are similar. Note that in the presence of misjudgments, the
mutual cooperations can be broken. In order to have cooperation, the rate of recovery of the
mutual cooperation must be higher than the rate of D imitation. But the rate of D imitation
is higher for large b values, which makes the cooperation non-robust against misjudgments
in the region of large b. In the same way, we saw that for r close to 1, it is hard to recover
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Figure 7. Fraction of cooperation at the equilibrium in the DO model with effective payoff for
b = 1.05 in the presence of errors for the synchronous update. The results are shown for r = 0.0,
r = 0.5 and r = 1.0.
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Figure 8. Fraction of cooperation at the equilibrium in the DO model with effective payoff for
b = 3.0 in the presence of errors for the synchronous update. The results are shown for r = 0.0,
r = 0.5 and r = 1.0.

mutual cooperations from (D, D) interactions. So, even for low b values, as r increases, the
cooperation is less robust.

4. Conclusion

The mechanism of adopting different strategies against different opponents with strategy
evolution given by the imitation rule and the replacement of the worst strategy is a simple
mechanism that keeps cooperation alive. This mechanism has the general property of keeping
the initial mutual cooperation and of punishing the exploiters. The remarkable feature of this
model is that cooperation in heterogeneous topologies is maintained at high levels with both
the total and the effective payoff, a phenomenon that does not occur in the usual models with
the effective payoff. On the other hand, by changing the parameter r in the synchronous update,
we found that the more the nodes centered around a few highly connected nodes, the lower the
cooperation fraction. We also showed that the initial fraction of cooperation strongly shapes
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the final outcome. In the asynchronous case, we showed that the network topology has a weak
effect. As the last result, we showed that in the presence of misjudgments in the determination
of the worst interaction, the cooperation fraction at equilibrium is robust for low b values. To
conclude, we stress that, although in the usual model cooperation is severely weakened in the
case of effective payoff, in the DO model cooperation is kept alive even for high b values in
both cases.
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